Citizen science by youth is rapidly expanding, but very little research has addressed the ways programs meet the dual goals of rigorous conservation science and environmental science education. We examined case studies of youth-focused community and citizen science (CCS) and analyzed the learning processes and outcomes, and stewardship activities for youth, as well as contributions to site and species management, each as conservation outcomes. Examining two programs (one coastal and one water quality monitoring) across multiple sites in the San Francisco Bay Area, CA, in- and out-of-school
This poster was presented at the 2010 Association of Science-Technology Centers Annual Conference. The Saint Louis Science Center is a partner in Washington University's Cognitive, Computational, and Systems Neuroscience interdisciplinary graduate program funded by the NSF-IGERT (Integrative Graduate Education and Research Traineeship) flagship training program for PhD scientists and engineers.
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE:
-
TEAM MEMBERS:
Kurt ThoroughmanGregory DeAngelisRandy BucknerSteven PetersenDora Angelaki
To address the challenges of recruiting, training, impacting, and retaining scientists in informal outreach and to capitalize on access to the public through a local science center, Washington University and the St. Louis Science Center (SLSC; http://www.slsc.org) collaborated to create a program that combines informal science communication and the professional development of graduate students. The program sought to produce scientists who were trained to be effective informal educators. Workshops developed and led by SLSC staff, followed by personalized coaching, covered essential science
The CADRE Early Career Guide offers advice from experienced DR K-12 awardees on becoming a successful researcher in the field of STEM education. The guide also profiles a support program, the CADRE Fellows, for doctoral students in STEM education research.
DATE:
TEAM MEMBERS:
Jennifer StilesCatherine McCullochCommunity for Advancing Discovery Research in Education (CADRE)
Students in the U.S. educational system are increasingly diverse, and this diversity is reflected in science, technology, engineering, and mathematics (STEM) fields. Diversity in education encompasses students from many races, genders, and socioeconomic backgrounds; students who speak a variety of languages; and students from many cultures. For instance, ethnic diversity increased by 5% across primary and secondary public schools from 2000 to 2007 (Aud, Fox, & KewalRamani, 2010). Diversity is also evident in the socioeconomic make-up of students, with almost half of 4th graders in public
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
On the first day of the Science and Society course at the Cooperstown Graduate Program in Cooperstown, New York, I present the students with an incandescent lightbulb, with clear glass so one can easily see the filament inside. I ask the students how it works and they are able to tell me that the electricity comes in there, runs through the filament here, heats up, and produces light. Then I take out my iPhone and slide it across the table and ask, “How does this work?” Blank stares abound.
From 2014-2016, Pacific Science Center continued and expanded the Science Technology Engineering and Math Out-of-School-Time (STEM-OST) program with the purpose of delivering programs to stem the summer learning loss. Specifically, the project expanded to new venues in the Puget Sound (Washington) region; modified the lessons and activities so they also served students in grades K-2; aligned the curriculum with the Next Generation Science Standards (recently adopted by the Washington State Legislature) and increased the number of Family Science Days and Family Science Workshops offered to
The University of Wisconsin-Madison, Iowa State University, University of Pittsburgh, University of Texas at El Paso, Michigan State University, University of Georgia and University of California, Los Angeles will lead this Design and Development Launch Pilot to build the foundation for a national alliance that will prepare a new national STEM faculty, spanning all of post-secondary education, able to use evidence-based teaching, mentoring and advising practices that yield greater learning, persistence and completion of women and historically underrepresented minorities (URM) undergraduates in STEM. This project was created by this group of institutions, who are members of the Center for the Integration of Research, Teaching and Learning (CIRTL), in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address a STEM achievement and the graduation gap between undergraduate STEM students who are women and men, and between those who are URMs and non-URMs. At the same time U.S. universities and colleges struggle to recruit, retain and promote a diverse STEM graduate student body, and a diverse STEM faculty, who serve as role models and academic leaders for URM and female students to learn from, to work with and to emulate. This project, the CIRTL INCLUDES - Toward an Alliance to Prepare a National Faculty for Broadening Success of Underrepresented 2-Year and 4-Year STEM Students, has the potential to advance a national network of organizations to improve the success of future STEM faculty who will educate a diverse undergraduate body and contribute to the learning, retention and graduation of women and URMs in STEM fields.
The collaborating CIRTL universities will work closely with multiple organizations to address key goals, including Achieving the Dream, Advanced Technological Education Central, the American Association for the Advancement of Science, the American Mathematical Society of Two-Year Colleges, the American Physical Society, the American Society for Engineering Education, the Association of American Universities, the Association of Public and Land-Grant Universities, the Council of Graduate Schools, the Council for the Study of Community Colleges, Excelencia in Education, the Infrastructure for Broadening Participation in STEM, the Louis Stokes Midwest Center for Excellence, the Math Alliance, the National Institute for Staff and Organizational Development, the National Research Mentoring Network, the Partnership for Undergraduate Life Science Education, the Southern Regional Education Board, the Summer Institutes on Scientific Teaching, and the Women in Engineering Programs and Advocates Network. Together, this extensive collaborative network will three goals: (1) To deepen the preparation of future STEM faculty in teaching, mentoring and advising practices that promote the success of undergraduates who are women and URMs; (2) To expand and strengthen faculty preparation specifically for 2-year colleges; and (3) To target the preparation of future STEM faculty who are members of underrepresented groups for effective teaching and mentoring, contributing to their early-career success. The seven universities who are partnering to lead this project will work to: (1) Form active partnerships and national coalitions for each of the three goals; (2) Employ a collective impact framework for each goal team and the entire alliance, ensuring common agendas, shared metrics, mutually reinforcing activities and an integrated process using data improvement cycles; and (3) Achieve pilot outcomes that position the alliance for future work.
DATE:
-
TEAM MEMBERS:
Robert MathieuRenetta TullKatherine BarnicleCraig OgilvieLeslie GonzalesErin SandersJudy MiltonMary Besterfield-SacreBenjamin FloresOcegueda Isela
Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.
Technical
This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE:
-
TEAM MEMBERS:
Mohamed MusaviVenkat BhethanabotlaCary JamesVemitra WhiteLola Brown
resourceprojectProfessional Development, Conferences, and Networks
The University of Georgia, Florida International University, Savannah State University, Clark Atlanta University and Fort Valley State University will lead this Design and Development Launch Pilot to address enhancing recruitment, retention, productivity and satisfaction of historically underrepresented minority (URM) undergraduate students who enroll in STEM graduate programs at primarily white (PWI) and research intensive (RI) universities. This project was created in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address the STEM education practices for retaining and educating URM undergraduate STEM students at our nation's research intensive universities (RIs). This project, NSF INCLUDES: An Integrated Approach to Retain Underrepresented Minority Students in STEM Disciplines, has the potential to advance a collaborative approach by a group of organizations to improve the success of URM undergraduates in STEM disciplines.
The collaborating universities will work together for the purposes of empowering URM students to more effectively navigate STEM undergraduate and graduate education at minority serving institutions (MSIs) and PWIs, and for transforming the culture of PWIs and RIs. The team plans to use evidence-based approaches to gain insights into cultural differences that impact the success of URM STEM students. Three interventions will be included in the pilot study: (1) undergraduate URM student exchanges between MSIs and PWIs, (2) collaborative inquiry to engage URM students in social science research about issues and experiences of under-representation in STEM, and (3) the adaptation of resources from the Center for the Integration of Research, Teaching and Learning (CIRTL) to train STEM faculty to embrace diversity and improve teaching in diverse classroom settings. The project team plans to develop strategies to scale approaches and develop an alliance of institutions to maximize potential project outcomes.
DATE:
-
TEAM MEMBERS:
Suzanne BarbourJuan GutierrezMichelle CookJoachim WaltherTimothy BurgJaideep ChaudharyShekhar BhansaliSarwan DhirMohamad Mustafa