In-class projects can be an effective way for students to learn subject material that relates to authentic problems people address outside of classrooms. Jurow investigated middle-schoolers’ participation in an in-school math project based on the premise of creating a research station in Antarctica. Students’ engagement with the project and meaning making with math content shifted as students navigated through the different and often competing figured worlds of the classroom and “Antarctica.”
How and why students develop productive science learning identities is a key issue for the education community (see Bell et al, 2009). Carlone, Scott, and Lowder describe the changes in the science identities of three students as they move from fourth to sixth grade. The authors discuss the processes — heavily mediated by race, class, and gender — by which the students position themselves, or are positioned by others, as being more or less competent learners in science.
Today’s standardized testing methods are too narrow for measuring 21st-century learning that occurs across time and diverse social contexts, from formal to informal and embodied to virtual. This paper uses the concept of “connected learning” to illustrate what 21st-century education involves; it then describes research methods for documenting this learning.
Researchers Maltese, Melki, and Wiebke investigated when lasting interest in STEM is sparked and how it is maintained by comparing the remembrances of adults who did and did not persist in STEM. Both groups said that they became interested in STEM early, usually by Grade 6. Those who persisted in STEM were more likely than those who did not to say that they had always been interested in STEM. Parents and teachers were early influences for those who stayed in STEM fields.
Mobile technology can be used to scaffold inquiry-based learning, enabling learners to work across settings and times, singly or in collaborative groups. It can expand learners’ opportunities to understand the nature of inquiry whilst they engage with the scientific content of a specific inquiry. This Sharples et al. paper reports on the use of the mobile computer-based inquiry toolkit nQuire. Teachers found the tool useful in helping students to make sense of data from varied settings.
This pilot study was funded by the Museum of Science’s Women in Science Committee to examine the impact of competition on children participating in Design Challenges engineering experiences, and in particular, to see what effect, if any, the competitive design of these engineering activities had on girl participants. The research questions for this study included: 1. How does competition affect participants' engagement in engineering activities? 1.a Does this differ for boys and girls? 2. How does competition affect participants' desire to take part in future engineering activities? 2.a. Does
In the last two years SISSA Medialab designed, tested and evaluated two projects aiming at empowering children (in one case) and teenagers (in the other) to act as science journalists in order to promote a personal, critical attitude towards science and technology. The two groups produced a paper magazine and a blog, respectively, in a participatory process, in which adults acted as facilitators and experts on demand, but the youths were the leaders and owners of the products. Special care was taken to ensure inclusiveness, by involving in the project children and teenagers from any social
The article focuses on children's makerspaces and the maker movement in Canada. Topics include the Nova Scotia government's idea to distribute 3D printers to libraries to create public makerspaces, which are collaborative meeting places that blend craft and high technology to foster do-it-yourself (DIY) solutions, the Maker Club in Kitchener, Ontario owned by entrepreneur Cam Turner and his son Owen, and the organization Scoperta, maker Jim Akeson's version of the organization Curiosity Hacked.
Amusement parks offer rich possibilities for physics learning, through observations and experiments that illustrate important physical principles and often involve the whole body. Amusement parks are also among the most popular school excursions, but very often the learning possibilities are underused. In this work we have studied different teacher roles and discuss how universities, parks or event managers can encourage and support teachers and schools in their efforts to make amusement park visits true learning experiences for their students.
DATE:
TEAM MEMBERS:
National Resource Center for Physics EducationAnn-Marie PendrillCecilia KozmaAndreas Theve
Life on Earth is interactive software installed as a museum touchtable exhibit that uses data about over seventy thousand (70,000) species from several databases to help visitors explore and deepen their understanding of biodiversity, evolution and common ancestry, and the history of life on earth (DeepTree/ FloTree). Some installations also include a smaller exhibit that poses puzzle challenges about evolutionary relationships among species (Build-a-Tree (BAT)). The exhibit was installed at four natural history museums across the U.S. – the Harvard Museum of Natural History (Cambridge, MA)
DATE:
TEAM MEMBERS:
Harvard UnivesityJim HammermanAmy SpiegelJonathan Christiansen
Interactive surfaces are increasingly common in museums and other informal learning environments where they are seen as a medium for promoting social engagement. However, despite their increasing prevalence, we know very little about factors that contribute to collaboration and learning around interactive surfaces. In this paper we present analyses of visitor engagement around several multi-touch tabletop science exhibits. Observations of 629 visitors were collected through two widely used techniques: video study and shadowing. We make four contributions: 1) we present an algorithm for
Concord Evaluation Group (CEG) conducted an evaluation study to learn about the Future City’s impact on students as well as to discover ways to enhance Future City for future implementation. In addition to exploring the program’s impacts, with this study we also had an opportunity to explore potential differences between students who compete at their Regional competitions only versus students who make it to the National competition. In collaboration with DiscoverE, CEG developed four surveys to collect feedback from students, parents, educators, and engineer mentors. These data collection