Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
‘6 Degrees of Connection’ is an informative and memorable program that combines a one-hour Science On a Sphere® interactive presentation with a follow-up creative art activity – each aspect of which encourages middle school students to think of interconnections among phenomena on the planet, including the natural world and human activity. The ‘6 Degrees of Connection’ program was developed by the Nurture Nature Center (Easton PA) in collaboration with the Maryland Science Center (Baltimore MD) through an extensive process of developing the concept, prototypes, and final program. Lehigh
DATE:
TEAM MEMBERS: Kathryn Semmens Rachel Hogan Carr Keri Maxfield Jim O'Leary Joan Ramage Maurice Henderson Christine Larouche Jeff Hayward
resource project Media and Technology
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.

Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
DATE: -
TEAM MEMBERS: Stephen Uzzo Robert Chen
resource evaluation Media and Technology
This report summarizes evaluative findings from Computational Thinking in Ecosystems project, and the resulting product, i.e., a functional draft of a game called “The Pack.” Evaluative efforts included gathering feedback from key stakeholders—including members of the design based research (DBR) team members at the New York Hall of Science (NYSCI) along with advisors and project partners— about the game and the DBR process, as well as an independent assessment of the game via feedback from educators and a round of play-testing with youth.
DATE:
TEAM MEMBERS: Jennifer Borland
resource research Media and Technology
Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show
DATE:
TEAM MEMBERS: Aaron Price Katherine Gean Claire Christensen Elham Beheshti Bryn Pernot Gloria Segovia Halcyon Person Steven Beasley Patricia Ward
resource research Media and Technology
The STEM + Digital Literacies (STEM+L) project investigates science fiction composing as an effective mechanism to attract and immerse adolescents (ages 10-13) from diverse cultural backgrounds in socio-scientific issues related to environment. The participating students (G5-8) work in small groups to design and produce STEM content rich, multimedia science fictions during the summer (1 week) and the academic year (4-6 2.5hr sessions). Culminating activities include student presentations at a local science fiction film festival. The research component employs an iterative, design-based
DATE:
TEAM MEMBERS: Ji Shen Blaine Smith
resource research Media and Technology
Latina SciGirls addresses specific barriers that prevent many young Latinas from participating fully in STEM, including: Lack of STEM identity (girls’ ability to envision themselves as STEM professionals) Limited exposure to STEM role models who look like them Lack of knowledge and/or misunderstanding of STEM fields
DATE:
TEAM MEMBERS: Rita Karl Alicia Santiago Brenda Britsch Brad McLain Valerie Knight-Williams
resource research Media and Technology
The goal of this three-year project is to leverage NSF’s investment in both SciGirls and computer science education by engaging 8-13 year-old girls in computational thinking and coding through innovative transmedia programming which inspires and prepares them for future computer science studies and careers.
DATE:
resource research Media and Technology
SciGirls CONNECT 2 is a three-year NSF project that examines how the gender equitable and culturally responsive strategies currently employed in the SciGirls informal STEM educational program influences middle school girls’ STEM identity formation.
DATE:
TEAM MEMBERS: Rita Karl Alicia Santiago Karen Peterson Roxanne Hughes
resource research Media and Technology
Antarctic Dinosaurs: A Giant Screen Film and Outreach Project aims to leverage the popularity and charisma of dinosaurs to draw museum audiences into a captivating educational journey, revealing the history and transformation of Antarctica and the planet’s polar ecosystems, and exploring the forces that continue to shape the continent. In addition to bringing to life a wealth of unfamiliar dinosaurs, amphibians and proto-mammals, this project will journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and Antarctica’s profound changes. Centered
DATE:
TEAM MEMBERS: Deborah Raksany
resource research Media and Technology
Conducting qualitative research in any discipline warrants two actions: accessing participants and eliciting their ideas. In chemistry education research, survey techniques have been used to increase access to participants and diversify samples. Interview tasks (such as card sorting, using demonstrations, and using simulations) have been used to elicit participant ideas. While surveys can increase participation and remove geographic barriers from studies, they typically lack the ability to obtain detailed, thick description of participant ideas, which are possible from in-person interviews
DATE:
TEAM MEMBERS: Justin Pratt Ellen Yezierski
resource project Media and Technology
Reconceptualizing STEM + Computing Literacy is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance multidisciplinary integration of computing and computational thinking in K-12 science, technology, engineering, and mathematics (STEM) teaching and learning through applied research and development across one or more domains, and broadening participation in computing and computing-related fields. The project will study the integration of computational thinking as part of a new and more contemporary perspective of STEM literacy, and will design, develop, and beta-test a prototype literacy assessment tool that will measure computational thinking literacy along with measures of literacy in other STEM content areas. The tool will be available to the general public as a self-measurement application (App) that can be used by individuals to test their own literacy, and by teachers, schools, and informal educators and organizations to assess literacy development in their students and in their STEM education programs. This transdisciplinary research project will begin the process of creating an innovative approach and tool for measuring literacy that will expand the definition of literacy to include computational skills along with science reasoning. Literacy is an important concept and measurement that has traditionally been used to assess an individual's knowledge of science. This project will explore a broader literacy perspective that incorporates learning derived from out of school and one that incorporates computational skills and thinking as part of a more contemporary perspective of STEM literacy. A prototype web-based App allowing individuals and education organizations to assess literacy levels, and ways to enhance literacy, will be developed and studied. The methodology will be developed using discussions and knowledge from over 60 experts across computing, education, science, social science, and other STEM fields using a Delphi method to engage in reconceptualization of literacy. The hypothesis is that this new STEM+C literacy framework should be structured along four interacting but semi-independent domains: 1) general STEM+C knowledge; 2) self-defined areas of STEM+C knowledge and expertise; 3) attitudes and beliefs related to STEM+C; and 4) the skills and competencies necessary to participate in STEM+C related pursuits and discussions, including measures of modes of STEM+C thinking. Each of these four domains is likely to include numerous sub-domains and associated descriptors, which collectively describe the different aspects of being a STEM+C literate citizen. The application will be designed to provide feedback to individuals on their knowledge, attitudes and skills compared with those of others and suggest ways to enhance and improve their skills and understanding through an embedded feedback mechanism. This project creates public benefit by providing individuals and organizations with a responsive real-time understanding measuring STEM+C literacy, deepening the dialogue about the value of public engagement in science, engineering, technology, math and computing and revealing the dynamic factors that inform STEM+C literacy.
DATE: -
resource research Media and Technology
We cannot take access to equitable out‐of‐school science learning for granted. Data compiled in 2012 show that between a fifth (22% in Brazil) and half (52% in China and the United States) of people in China, Japan, South Korea, India, Malaysia, the United States, the European Union, and Brazil visited zoos, aquaria, and science museums (National Science Foundation, 2012). But research suggests participation in out‐of‐school science learning is far from equitable and is marked by advantage, not least the social axes of age, social class, and ethnicity (Dawson, 2014, 2014; National Science
DATE:
TEAM MEMBERS: emily dawson