At the CSMC, we have three main goals for our Outreach and Education activities, and we do our best to accomplish all three goals with all of our programs and activities. These goals include increasing young peoples' interest in STEM, increasing adults' appreciation of the importance of publicly funded research, and professional development for our students, post docs and PIs. With that in mind, we have created a suite of education and outreach programs that highlight professional development for the people doing the outreach while also accomplishing our outreach goals. Our programs include hosting local and regional Science Pub events, participating in Meet-a-Scientist style outreach events at schools and science and technology centers, and something called the Oregon Outreach Days tours. These tours combine a Science Pub event for the public in the evening with meetings with business, political and educational leaders during the day.
The UMN MRSEC conducts an ambitious and multi-faceted education and outreach program to extend the impact of the Center beyond the university, providing undergraduates, college faculty, high school teachers, and K-12 students with opportunities that augment their traditional curriculum and increase their appreciation of materials science and engineering (MS&E). Our summer research program provides high-quality research and educational experiences in MS&E to students and faculty, drawn primarily from undergraduate institutions with limited research opportunities, while placing a strong emphasis on inclusion of women and members of underrepresented groups.
The Franklin Institute (TFI), in collaboration with the Institute for Learning Innovation (ILI), will conduct a research effort that explores the role that informal science learning plays in supporting girls' long-term interest, engagement and participation in science communities, hobbies and careers. Five longstanding programs for girls, begun 5-20+ years ago, will be the focus of the proposed study and include the National Science Partnership (NSP), Girls at the Center (GAC), Wonderwise, and Women in Natural Sciences (WINS). The selected study projects have access to girl participants who are high-school aged or older and represent diverse race, ethnicity and SES. A national Research Advisory Council will ground the investigation and review the findings at each stage of the research. The Community of Practice (CoP) literature (Lave and Wenger, 1991) will provide the theoretical frame for the overarching research question. Findings will document long-term impacts of girls' participation in identified informal science programs, determine how informal contexts in general contribute to girls' science learning and achievement, and develop a model for understanding the impact of informal science learning initiatives. Deliverables will include specific examples of informal learning experiences that support girls' long-term participation in science and evidence of the types of influences, including significant adults and particular activities, that contribute to girls' trajectories of participation. Dissemination tools will be a national conference, a research monograph and a series of workshops conducted in conjunction with professional conferences for informal science educators. By better understanding the impact of informal programs in science, specifically and more generally, and by developing and demonstrating an effective model for understanding such impact across projects, the proposed research stands to inform the field and provide a base for future project development and research efforts. The research results will improve the understanding of practice in these arenas and will document the significant role that informal programs place in influencing girls' vocational and avocational choices and participation in STEM fields. The study will also demonstrate the applicability of the CoP research model and its lessons to other informal science programs.
Based on nearly two decades of museum programming for low-income Hispanic and African American girls at the Miami Science Museum, this extension service project employs a train-the-trainers approach to build a network of museum-based Extension Agents dedicated to helping informal science educators attract the interest and support the persistence of minority girls, grades 6-12, currently underrepresented in STEM studies. Led by the Miami Science Museum, the collaboration brings together an experienced group of institutions with representation from the informal science, gender research, and engineering communities. In addition to the Museum, the Expert Project Team consists of key staff from the Association of Science-Technology Centers (ASTC), and SECME Inc. (formerly the Southeastern Consortium of Minorities in Engineering), who serve as the conduit for the participation of minority engineering professional organizations. An advisory/research panel of researchers in gender in STEM, whose work complements those of the project investigators, works closely with the Expert Project Team to prepare Extension Agents from ten geographically dispersed museums, who in turn provide a range of training and peer mentoring services to the practitioner community of informal science educators in science-rich institutions nationwide. Participating museums include: Connecticut Science Center (Hartford, CT), New York Hall of Science (New York, NY), Maryland Science Center (Baltimore, MD), Miami Science Museum (Miami, FL), COSI (Columbus, OH), St. Louis Science Center (St. Louis, MO), Louisville Science Center (Louisville, KY), Sci-Port (Shreveport, LA), Explora (Albuquerque, NM), and California Academy of Sciences (San Francisco, CA).
DATE:
-
TEAM MEMBERS:
Judy BrownLaura Huerta MigasMichele Williams
The Education and Outreach (EO) program is an essential part of the CRISP MRSEC located at Yale and SCSU. CRISP offers activities that promote the interdisciplinary and innovative aspects of materials science to a diverse group of participants. The objective of the program is to enhance the education of future scientists, science teachers, K-12 students, parents, and the general public. CRISP’s primary informal science activities include public lectures, family science nights, New Haven Science Fair and museum partnerships.
In this paper, we explore the details of one youth's science-related learning in- and out-of-school at the time of her participation in an ethnography of youth science and technology learning across contexts and over time. We use the Cultural Learning Pathways Framework to analyze the youth's interests, and the related sociocultural, historical, material, and affect-laden practices in which she and her family participated. The following question guided our analysis: How do everyday moments—experienced across settings, pursuits, social groups, and time—result in scientific learning, expertise
The University of Arkansas Center for Math and Science Education (CMASE), one of eleven mathematics and science centers on university and college campuses around the state, provides quality resources and materials to the home, private and public education community. The Arkansas NASA Educator Resource Center, located within CMASE, is the state's dissemination point for education materials provided by NASA. Resources and school/classroom presentations are free of charge. The main objectives of both centers are to provide: (1) K-16 education outreach to the home, private and public Northwest Arkansas education community; (2) quality professional development for pre-service and in-service teachers at local, regional, state and national levels; (3) access points for dissemination of educational materials, resources and information; and (4) links to common education allies throughout the state and nation.
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help
DATE:
TEAM MEMBERS:
Lisa KomoroskeSarah HameedAmber SzoboszlaiAmanda NewsomSusan Williams
This report applies a practice-based approach to learning and making in the context of a museum makerspace (The Makeshop at the Children's Museum of Pittsburgh). This perspective draws upon theories of cultural and social learning, which assert an understanding of learning as fundamentally tied to the social and cultural contexts in which it occurs and focuses on the "practices" that define learning communities. The practices identified in this report are observable and/or reportable evidence of learners' engagement in making as a learning process.
Connected learning is an educational approach designed to make learning relevant to students, creating a deeper form of learning and understanding that will help students become life-long learners who will grow and thrive in school, work and life. Afterschool programs have long been implementing this approach that ties together students interests, peer networks and academic pursuits. This report explores the benefits of using a connected learning approach, the variety of ways afterschool programs are offering connected learning opportunities to engage students in learning, and shares ideas on
The "places" of learners and practitioners of science from communities of color are increasingly a focus in analyses of science learning and education in the U.S. Typically, these places are defined through the discourse of equity that focuses on representation and the goal of creating learning environments that will allow students of color to perform as well as their white peers. More recently, this focus has shifted from performance to actual knowledge of and the ability to think critically about science, technology, engineering, and mathematics (STEM) content. Although critical thinking and
DATE:
TEAM MEMBERS:
Megan BangDouglas MedinGregory Cajete
Indigenous people are significantly underrepresented in the fields of science, technology, engineering and math (STEM). The solution to this problem requires a more robust lens than representation or access alone. Specifically, it will require careful consideration of the ecological contexts of Indigenous school age youth, of which more than 70% live in urban communities (National Urban Indian Family Coalition, 2008). This article reports emergent design principles derived from a community-based design research project. These emergent principles focus on the conceptualization and uses of