This document summarizes lessons learned from implementing Leap into Science: Cultivating a National Network for Informal Science and Literacy (Leap into Science) from 2017-2023.
In this collaborative project, a university research lab and children's science museum work together to design, implement, study, and revise a week-long data science camp for middle school age students, data science learning assessment items and a facilitator training curriculum.
In fall 2019, the Bell Museum received funding via a NASA TEAM II grant to create Mars: The Ultimate Voyage, a full-dome planetarium show and accompanying hands-on activities that focus on the interdisciplinary roles that will be needed to send humans to Mars. This report from Catalyst Consulting Group presents the findings from the summative evaluation completed in March–May 2023.
The project team published a research synopsis article with Futurum Science Careers in Feb 2023 called “How Can Place Attachment Improve Scientific Literacy?”
The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
This report shares the results of a year-long study of the impact of IMLS grants (1998-2003) though programs that served youth aged 9-19. Nearly 400 museum and library programs were surveyed about their goals, strategies, content, audience, and structure, as well as about their impact, effectiveness, and outcomes.
The paper presents and discusses the Research and Development and related reflective practice process for the design of an approach to STEM school education. It focuses on Future Inventors, an education project of the National Museum of Science and Technology Leonardo da Vinci which aims to design, develop, test, and define an approach for teaching and learning in STEM at junior high school. Through this case study, the authors argue for the need to design for learning activities in which children can learn creatively building on their own potential and, for educators, to develop and maintain
Two critical challenges in science education are how to engage students in the practices of science and how to develop and sustain interest. The goal of this study was to examine the extent to which high school youth, the majority of whom are members of racial and ethnic groups historically underrepresented in STEM, learn the skills and practices of science and in turn develop interest in conducting scientific research as part of their career pursuits. To accomplish this goal, we applied Hidi and Renninger’s well-tested theoretical framework for studying interest development in the context of
Making experiences and activities are rich with opportunities for mathematical reasoning that often go unrecognized by both participants and educators. Since 2015, we have been exploring this potential through the Math in the Making initiative. The work focuses particularly on children’s museums and science centers, many of which have developed maker spaces and programs over the last decade. In this article, we share insights from our most recent round of research. To begin, we consider the fundamental question of what it means to authentically integrate mathematics with making.
Although approximately one-quarter of U.S. students reside in rural communities, rural youth are fifty percent less likely to receive and engage in out-of-school STEM experiences than their urban counterparts. In addition, there has been significantly more investment in understanding and improving informal experiences in urban settings than in rural settings. As a result, there is less known about the characteristics of learning ecosystems and programs that support STEM learning for youth in informal contexts within rural communities. This Research in Service to Practice project aims to address this challenge by exploring the feasibility of a culturally relevant and sustaining STEM program designed specifically for rural youth and their families. Parents and caregivers play a critical role in fostering youths’ interests and persistence in STEM through their own engagement and by connecting them to STEM opportunities and STEM-related fields and career pathways. Through a partnership between the High Desert Museum in Oregon, the Institute for Learning Innovation, Maine Mathematics and Science Alliance, JKS Consulting, and three informal science education institutions, a year-long series of STEM-based workshops and experiences for youth and their families will be co-designed by members of the rural community, informal STEM educators, and STEM professionals and implemented within the rural communities of the participating informal science education institutions—Caddo Mounds State Historic Site Weeping Mary (TX), High Desert Museum (OR), Oregon Coast Aquarium, and The Wild Center (NY). Each series will reflect the cultural knowledge, connections, and resources specific to each rural community. In addition, the informal STEM educators and STEM professionals will receive training on facilitating the culturally sustaining workshops and experiences. Researchers at the Institution for Learning Innovation and the Maine Mathematics and Science Alliance together with the evaluator at JKS Consulting will employ a collaborative design-based research approach to identify and study the STEM learning practices and supports that occur within the program to promote youths’ interests and persistence in STEM. The findings will offer evidence-based insights to the field on how to better engage, reflect, and provide opportunities for diverse rural communities. Ultimately, this research has the potential to advance the current understanding thereby, strengthening rural STEM learning ecosystems and broadening STEM participation among youth in rural communities.
Over a four-year project duration, a collaborative design-based research approach will be employed to address the following research questions: (1) How does culturally sustaining informal STEM programming for families in rural communities contribute to increases in youth STEM persistence? (1a) How might this vary in relation to family and community factors? (2) How does culturally sustaining informal family STEM programming increase community connectivity between STEM-related resources and institutions across informal and formal learning contexts in rural communities leading to a more robust and inclusive STEM learning ecosystem? (2a) To what extent do participating families, informal STEM educators, STEM professionals, and community partners each play a role in increasing this connectivity? The research sample will include 300 families with youth ages 8-11, informal science educators, and STEM professionals across all four sites. Surveys, interviews and observations will be the primary data sources. Analysis of Variance and simple descriptive statistical analysis will be used to analyze the quantitative data. The qualitative data will be analyzed using thematic coding through NVivo. In addition, to complement the research data, JKS Consulting will conduct the formative and summative evaluations of the project to hone effective practices for training informal science learning practitioners in developing and implementing place-based, inquiry-based family learning in rural communities and effective and sustainable practices for engaging rural families in place-based STEM. Findings from the research will be made available and widely distributed in publications, conference presentations, and a multi-part Research to Practice Toolkit designed for parents and caregivers, informal science educators, STEM professionals, and the informal education field at large.
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
Reframing engineering activities to emphasize the needs of others has the potential to strengthen engineering practices like problem scoping, while also providing more inclusive and socially relevant entry points into engineering problems. In a three-year design-based research project, we developed novel strategies for adding narratives to engineering activities to deepen girls’ engagement in engineering practices by evoking empathy for the users of their designs. In this article, we describe a set of hands-on engineering activities developed through iterative development and testing with 190