Skip to main content

Community Repository Search Results

resource project Public Programs
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.

Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
DATE: -
resource research Public Programs
Citizen science by youth is rapidly expanding, but very little research has addressed the ways programs meet the dual goals of rigorous conservation science and environmental science education. We examined case studies of youth-focused community and citizen science (CCS) and analyzed the learning processes and outcomes, and stewardship activities for youth, as well as contributions to site and species management, each as conservation outcomes. Examining two programs (one coastal and one water quality monitoring) across multiple sites in the San Francisco Bay Area, CA, in- and out-of-school
DATE:
resource research Public Programs
Students in the U.S. educational system are increasingly diverse, and this diversity is reflected in science, technology, engineering, and mathematics (STEM) fields. Diversity in education encompasses students from many races, genders, and socioeconomic backgrounds; students who speak a variety of languages; and students from many cultures. For instance, ethnic diversity increased by 5% across primary and secondary public schools from 2000 to 2007 (Aud, Fox, & KewalRamani, 2010). Diversity is also evident in the socioeconomic make-up of students, with almost half of 4th graders in public
DATE:
TEAM MEMBERS: Enrica Ruggs Michelle Hebl
resource research Public Programs
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
DATE:
TEAM MEMBERS: Amie Patchen Andrea Aeschlimann Anne Vera-Cruz Anushree Kamath Deborah Jose Jackie DeLisi Michael Barnett Paul Madden Rajeev Rupani
resource evaluation Media and Technology
As part of the National Science Foundation (NSF) funding for the In Defense of Food project directed by Kikim Media, the independent evaluation firm Knight Williams Inc.1 conducted a summative evaluation of the project’s key deliverables, which included: a PBS television broadcast program, an outreach effort, and an educational curriculum. This report (Study 3 of 3) considers the In Defense of Food curriculum and, in particular, educators’ reactions to the curriculum in terms of perceived appeal, ease of implementation, and learning value. Feedback was gathered from educators who were surveyed
DATE:
TEAM MEMBERS: Valerie Knight-Williams Divan Williams Rachael Teel Dobrowolski Gabriel Simmons Michael Schwarz
resource project Public Programs
Non-Technical

Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.

Technical

This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE: -
TEAM MEMBERS: Mohamed Musavi Venkat Bhethanabotla Cary James Vemitra White Lola Brown
resource project Public Programs
Northern Michigan University's Center for Native American Studies and the Office of Diversity and Inclusion will lead this Design and Development Launch Pilot about culturally inclusive K-16 STEM education for American Indian and Native Alaskan (AIAN) students. This project was created in response to the NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.

The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address the undergraduate STEM achievement and the graduation gap between NAAIs and non-native Americans. This project, the NSF INCLUDES: Indigenous Women Working Within the Sciences (IWWS), has the potential to advance knowledge, instructional pedagogy and practices to improve the performance of NAAI high school students and undergraduate students in STEM.

This project team will work to: (1) pilot activities and coursework to train K-16 STEM educators about American Indian inclusive methods and materials, (2) to provide AIAN high school students with STEM college preparatory experience using inclusive STEM practices, and (3) to provide a cohort of female AIAN high school students additional university experiences and mentors as these students transition to postsecondary education. Activities include a five-day summer educators institute for 40 K-16 STEM educators, an additional weekend workshop for 20 K-16 STEM educators, a summer STEM academy for 96 AIAN high school students, a STEM weekend workshop for female AIAN high school students, and a mentoring program for AIAN high school students.
DATE: -
TEAM MEMBERS: April Lindala Jessica Cruz Martin Reinhardt
resource project Professional Development, Conferences, and Networks
This collaboration between two Historically Black Colleges and Universities (HBCUs) will form a networked improvement community located within the Piedmont Region of North Carolina. In close partnership with community colleges and civic organizations, the project will reach families and students that lead to broader participation of underrepresented groups in science, technology, engineering, and mathematics (STEM) fields. The overall goal is to build and sustain a scalable, inquiry-based network with the purpose of increasing the academic success of underrepresented ethnic minorities and women in the STEM continuum. By engaging in culturally relevant socio-environmental frameworks, project outcomes will positively impact student retention, knowledge, and quantitative skills in STEM across socio-economic divides and STEM disciplines.

The Launch Pilot phase will focus on evidence-based teaching and learning approaches for middle school students. The core structure of the network will serve as a platform to launch and guide other age- and level-specific educational instruction, research, and assessment initiatives. Student understanding of the nature of science will be enhanced by adapting structure, behavior, and function (SBF) theory and system thinking hierarchical (STH) models. Ultimately, the network will represent a driver for social innovation that positively impacts broadening participation in STEM.
DATE: -
TEAM MEMBERS: Gregory Goins Thomas Redd Scott Harrison Paula Faulkner Stephanie Luster-Teasley Caesar Jackson Tonya Gerald-Goins Christopher McGinn Kimberly Weems
resource project Public Programs
Part I - At the same time communities all over the US are struggling to deal with climate change, resilience, and environmental justice, the nation faces a shortage of geoscientists who can work on these issues. This shortage is especially acute for marginalized and underserved communities. Gaps in the pathways to careers in geoscience begin as early as middle school?the last time many students encounter Earth science content in the classroom. To address these challenges, this project will create opportunities for students in three diverse communities (Atlanta, GA; San Bernardino, CA; and Oklahoma) to develop their scientific skills and knowledge while working on authentic, local problems as they progress from middle school to college and beyond, into the workforce. Part II - The project design is informed by research findings that students are more engaged and invested in learning science when it is connected to issues of concern to their local community and that use of authentic, mentored, real world research experiences increase retention and persistence. Bringing together partners who have led relevant, successful national efforts with partners in the three regions the project team will design and begin implementation of inclusive pathways that lead from an early interest in Earth to careers that require geoscience skills and knowledge. Each pathway will include multiple opportunities for students to 1) learn geoscience in the context of compelling local issues, 2) use geoscience to address local challenges, and 3) explore geoscience career pathways. Experience gained by initial program partners and regional pilots will be used to create national support structures for developing integrated geoscience pathways and a collective action framework for expanded partnerships.
DATE: -
TEAM MEMBERS: Cathryn Manduca Barbara Nagle Donna Charlevoix Raj Pandya Anne Egger
resource project Public Programs
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.

The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE: -
TEAM MEMBERS: Steven Stochaj Patricia Sullivan Luis Vazquez
resource project Public Programs
A non-technical description of the project test explains its significance and importance.

The goal of this project is to help students easily identify themselves as science or engineering professionals and increase the proportion of the local population, dominantly minorities, who pursue science and technology careers. Experience has demonstrated that students are most engaged in technical fields when they can participate in active, hands-on learning around problems with application to their local community. The focus of the effort is in marine science, which has local relevance to both the environment and the economy of the U.S. Virgin Islands. The project will use interventions at three crucial stages: middle school, high-school-college transition, and master-PhD transition, to engage students with specific active-learning and research-oriented programs. Community partners comprise a wide-ranging local organization that leverages the resources of other successful collaborations.

A technical description of the project

This project will create a transferable model that uses innovative partnerships among universities, governmental and non-governmental organizations, a professional society, and businesses, to create a local backbone organization with a shared vision for change and common success metrics broaden participation in science, technology, engineering, and mathematics (STEM). This project addresses the critical challenge of building scientific identity to increase interest and engagement of underrepresented minorities in STEM fields in the U.S. Virgin Islands. The plan includes targeted interventions at three significant times in the student career pathway (middle/high school, early college, and graduate school) that comprise: (1) field experiences in the marine sciences for middle/high school students, (2) early field research experiences for college freshmen and sophomore students, (3) bridge programming to a Ph.D. partnership with Pennsylvania State University, and (4) an intensive mentoring program. The model is grounded in social innovation theory through a framework that meets the five conditions for collective impact: common agenda, shared measurement of data and results, mutually reinforcing activities, continuous communication, and backbone support.
DATE: -
TEAM MEMBERS: Kristin Wilson Grimes Marilyn Brandt Nastassia Jones Carrie Bucklin Monica Medina
resource project Public Programs
The Bay Area Regional Collaboration to Expand and Strengthen STEM (RECESS) is a regional, unified STEM continuum effort from preschool through graduate school and career. RECESS is based on successful collective impact efforts in other fields and employs a participatory action research (PAR) approach to broaden participation in STEM. In the PAR framework, youth and their families will help to define the issues and develop expertise about community needs through a shared research process.

RECESS introduces participatory action research as an innovative element to the collective impact social agency framework. The intent is to determine the extent to which the engagement and involvement of the students and communities targeted can effectively shape the function of the collective impact network of organizations.

During the two year planning phase, RECESS (a) conducts a comprehensive needs assessment and gap analysis; (b) establishes a functioning organization of stakeholders with a common agenda and governance model; and (c) develops a detailed action plan. It is a significant contribution to the body of knowledge on effective and innovative collective impact structures designed to promote STEM education and participation.
DATE: -
TEAM MEMBERS: Renee Navarro Bertram Lubin