Given the importance of learning to economic and life success, this review seeks to broaden the conception of learning beyond traditional formal education. Learning occurs every day in many ways and in a range of settings. This broad scope of learning--termed "informal learning"--is increasingly important in the rapidly changing knowledge economy. As such, in this review paper, we examine the different types of informal learning, their opportunities and challenges, and their issues of access and equity. Spanning multiple disciplines, e draw particular attention to the workplace and adult
DATE:
TEAM MEMBERS:
Michelle Van NoyHeather JamesCrystal Bedley
It’s important to communicate the excitement and value of NSF-funded research. This tool (formatted as a Prezi presentation) helps you do that with assistance from NSF public affairs experts, exploring options for communicating your research and broader impacts.
Environmental education is about creating healthier communities for all—with ecological integrity, shared prosperity, and social equity as our long-term goals. Environmental educators have been working in, with, and for communities for decades. As communities have evolved, so has the field of environmental education. In creating the Community Engagement: Guidelines for Excellence, NAAEE brings the field’s professional standards to environmental educators’ dynamic work in today’s communities.
Why are these guidelines important? Environmental educators everywhere work in a constantly shifting
DATE:
TEAM MEMBERS:
North American Association for Environmental Education (NAAEE)Michele ArchieSusan ClarkJudy Braus
Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science
Students in the U.S. educational system are increasingly diverse, and this diversity is reflected in science, technology, engineering, and mathematics (STEM) fields. Diversity in education encompasses students from many races, genders, and socioeconomic backgrounds; students who speak a variety of languages; and students from many cultures. For instance, ethnic diversity increased by 5% across primary and secondary public schools from 2000 to 2007 (Aud, Fox, & KewalRamani, 2010). Diversity is also evident in the socioeconomic make-up of students, with almost half of 4th graders in public
This project will develop standardized, exportable and comparable assessment instruments and models for Women In Engineering (WIE) programs nationwide, thus allowing them to assess their program's activities and ultimately provide data for making well-informed evaluations.
To accomplish this goal, the principal investigators at the University of Missouri and Penn State University will work over a three-year period with their institutions' WIE programs and three cooperating programs at Rensselaer Polytechnic Institute, Georgia Tech, and University of Texas at Austin. With these five programs that collectively represent a variety of private and public, years of experience for WIE directors and student body characteristics, the investigators will pilot, revise, implement, conduct preliminary data analysis and disseminate easy-to-access, reliable and valid assessment instruments. The principles of formative evaluation will be applied to all instruments and products. All institutions will use the same set of instruments, thus allowing them to have access to powerful benchmarking data in addition to the data from each of their respective institutions.
A prior project, the Women's Experience in College Engineering Project (WECE) sought to characterize the factors that influence women students' experiences and decisions by studying college environments, events and support programs that affect women's satisfaction with their engineering major, and their decisions to persist or leave these majors. In contrast to WECE's macro-level and student focus, this proposal's target audience is WIE directors, with a focus on WIE programs, not students.
Women in Engineering programs around the United States are a crucial part of our country's response to the need for more women in engineering professions. There are about 50 WIE programs nationwide. Half have expressed interest in this effort. WIE directors will benefit by having ready-made assessment tools that will allow them to collect data on programs, evaluate these programs, and make decisions on how to revise programs and / or redistribute limited resources to maximize overall program effectiveness. Data from these instruments will also provide substantiated evidence for administrators, advisory boards and potential funding agencies. Finally, because these instruments will be available nationwide, programs will have the opportunity to take advantage of powerful benchmarking data for their decision-making processes.
This project provides the next logical step in the national movement to recruit and retain women in engineering.
DESIGN SQUAD GLOBAL (DSG) is a web-based, mobile-accessible digital hub and outreach initiative that creates new opportunities to empower middle school youth to solve real-world problems and understand the impact of engineering in a global context. The project builds on the Design Squad model for engineering education (including a television show and website). The ultimate goals of Design Squad Global are to: (1) develop innovative ways to incorporate effective engineering education into informal learning environments; (2) inform the field about promising practices in cross-cultural
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
A collaboration between two North Carolina state agencies allows in-school and out-of-school educators to share knowledge, engage students in in-school and out-of-school opportunities, and develop learning communities to advance science education in the state.
DATE:
TEAM MEMBERS:
Debra HallBenita TiptonLisa TolleyMarty Wiggins
Showing how various math and science topics relate to the real world is the key to motivating youth to pursue STEM careers. This idea is essential to the MIT (Massachusetts Institute of Technology) BLOSSOMS initiative.
BLOSSOMS, which stands for Blended Learning Open Source Science or Math Studies, is a program that freely provides interactive video lessons that teach teens how math and science pertain to everyday life, while encouraging critical-thinking skills. BLOSSOMS offers more than 200 online videos on various STEM topics, which are presented in a form that will provide youth with a
This issue features contributions on the theme of STEM Learning Surrounds Us: Building learning ecosystems that connect STEM education across multiple settings. One contribution features a statewide effort in North Carolina, while two others deal with the challenges of serving rural populations.
Reader response has been positive regarding the publishing of each issue in three parts over three months. This means that manageable amounts of content will be sent to you every month, once the journal starts coming out quarterly in spring 2018.
On the first day of the Science and Society course at the Cooperstown Graduate Program in Cooperstown, New York, I present the students with an incandescent lightbulb, with clear glass so one can easily see the filament inside. I ask the students how it works and they are able to tell me that the electricity comes in there, runs through the filament here, heats up, and produces light. Then I take out my iPhone and slide it across the table and ask, “How does this work?” Blank stares abound.