Skip to main content

Community Repository Search Results

resource research Media and Technology
Researchers have now acquired so much information about how the brain learns that a new academic discipline has been born, called “educational neuroscience” or “mind, brain, and education science.” This field explores how research findings from neuroscience, education, and psychology can inform our understandings about teaching and learning, and whether they have implications for educational practice. This interdisciplinary approach ensures that recommendations for applying these findings to instructional practices have a foundation in solid scientific research. It also ensures that teachers
DATE:
TEAM MEMBERS: David Sousa
resource research Media and Technology
In this interview, author and professor R. Keith Sawyer describes the importance of and interconnections among creativity, collaboration, and the science of learning. He explains that the older paradigm of schooling from 50 years ago where rote learning was predominant is no longer relevant in a knowledge-based society. We now have to prepare students for jobs that require adaptability, flexibility, and creativity. He endorses an approach to education that fosters a deeper conceptual understanding, especially through collaborative creativity. He maintains that true innovation usually comes
DATE:
TEAM MEMBERS: Keith Sawyer
resource research Media and Technology
Recent advances in neuroscience are highlighting connections between emotion, social functioning, and decision making that have the potential to revolutionize our understanding of the role of affect in education. In particular, the neurobiological evidence suggests that the aspects of cognition that we recruit most heavily in schools, namely learning, attention, memory, decision making, and social functioning, are both profoundly affected by and subsumed within the processes of emotion; we call these aspects emotional thought. Moreover, the evidence from brain-damaged patients suggests the
DATE:
TEAM MEMBERS: Mary Helen Immordino-Yang Antonio Damasio
resource research Media and Technology
This report highlights advances in neuroscience with potential implications for education and lifelong learning. The report authors, including neuroscientists, cognitive psychologists and education specialists, agree that if applied properly, the impacts of neuroscience could be highly beneficial in schools and beyond. The report argues that our growing understanding of how we learn should play a much greater role in education policy and should also feature in teacher training. The report also discusses the challenges and limitations of applying neuroscience in the classroom and in learning
DATE:
TEAM MEMBERS: The Royal Society Uta Frith
resource research Media and Technology
In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.
DATE:
TEAM MEMBERS: Anthony Kelly
resource research Media and Technology
This is a handout from a session presented at the 2008 ASTC Conference. Advances in neuroscience are revealing biological pathways underlying emotion, attention, and memory. How can this research be integrated with educational pedagogy to enhance free-choice learning? Join experts from neuroscience, education, and museums to explore practical ways in which new insights about the brain can be applied to creating museum experiences.
DATE:
TEAM MEMBERS: Jayatri Das
resource research Media and Technology
This report from the National Research Council explores how learning changes the physical structure of the brain, how existing knowledge affects what people notice and how they learn, the amazing learning potential of infants, and the relationship between classroom learning and learning in everyday settings such as community and the workplace. It identifies learning needs and opportunities for teachers and provides a realistic look at the role of technology in education.
DATE:
TEAM MEMBERS: National Research Council
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will further develop, roll out, and conduct research on a set of materials that will introduce middle school age youth to innovative and engaging engineering challenges in the Boys and Girls Club (B&GCs) context. Building on substantial prior work and evaluation-based learning, WISE Guys and Gals - Boys & Girls as WISEngineering STEM Learners (WGG) will: (1) combine engineering design activities with the (open source, online) WISEngineering infrastructure; (2) scale-up the infrastructure; (3) engage youth in informal afterschool experiences; and (4) collect a wealth of rich data to further our understanding of how youth learn through these experiences. This work will be conducted by Hofstra University's Center for STEM Research in conjunction with Brookhaven National Laboratory (BNL), The CUNY Graduate Center's Center for Advanced Study in Education (CASE), the Boys & Girls Club of America, and 25 B&GCs in New York and New Jersey. The underlying theoretical framework builds on proof-of-concept work supported by NSF and the Bill and Melinda Gates Foundation. An open source, on-line interface (WISEngineering) provides numerous virtual tools (e.g., social networking, Design Journal, embedded assessments) that promote learning and collaboration through challenging, thoughtful, and creative work. WGG will explore how to incorporate creativity, social networking, connections to real-world STEM needs/careers, and teamwork into challenges that can be completed in a one-hour period, an activity time constraint in many B&GC settings. Staff from the clubs will participate in face-to-face and virtual professional development in an effort to build their capacity as facilitators of STEM learning. Research will focus on: (1) how activities developed for 60-minute implementation and guided by informed engineering design and interconnected learning frameworks support youth learning and engagement; and (2) characteristics of the professional development approach that support B&GC facilitators' capacity development. By the end of the project, over 6,000 middle school aged youth, the majority from groups underrepresented in STEM areas, will gain experience with engineering design as they develop engineering thinking, new STEM competencies, STEM career awareness, and an appreciation for the civic value of STEM knowledge.
DATE: -
TEAM MEMBERS: David Burghardt Xiang Fu Kenneth White Melissa Rhodes
resource project Media and Technology
This Advancing Informal Science Learning Pathways project, Using Technology to Research After Class (UTRAC), explores whether a combination of technology (e.g., iPad-enabled sensors, web-based inquiry-focused portal) and facilitated visits improves learning outcomes for rural and Native American elementary-age youth in after school programs. Expected outcomes include improved engagement, knowledge, skills, and attitudes toward science, technology, engineering, and math (STEM). Project goals include promoting STEM learning through science inquiry activities keyed to specific Next Generation Science Standards as well as improving how technology can be used to enhance learning outcomes in afterschool programs. The experimental design of this project - testing the effects of physical or virtual facilitation visits on learning outcomes - will lead to improvements in STEM learning outcomes among rural and underrepresented students. This project will employ several innovations in utilizing technology to teach STEM topics including: (i) hands-on, real-time, crowd sourced data collected by participants in their schoolyards; (ii) a pedagogic emphasis on communication of schoolyard data among and between participants; (iii) testing of motivational incentives; and (iv) partnerships between after school providers, preservice teachers, and university researchers as facilitators. The entire process will be modularized so that it can be modified in terms of place, STEM topic or student cohort. The topic focus of the project -- Life Under Snow -- is relevant to participating students, as Montana school playgrounds lie blanketed under snow for the majority of the school year; it includes elements of snow science, carbon cycle science, and a combination at the intersection of three recent literacy initiatives (e.g., Earth Science, Climate, or Energy). UTRAC will pilot and evaluate facilitated snow science/carbon cycle science activities that couple real-time schoolyard data with tools patterned after those available through WISE (Web-based Inquiry Science Environment; wise.berkeley.edu). Participants will collect and compare data with other youth participants, and researchers will use formative assessments to define interventions with potential to maximize student engagement and learning improvements among underserved youth. The project will advance understanding of informal education's potential to improve STEM engagement, knowledge, skills and attitudes by quantifying how - and to what extent - youth engage with emerging technologies iPad-enabled sensors, and crowdsourcing and visualization tools. The deliverables include a quantifying metric for learning outcomes, a training model for the iPad sensors and web application, an orientation kit, a social media portal, and database for the measurements.
DATE: -
TEAM MEMBERS: Tony Hartshorn Nick Lux Kimberly Obbink Paul Stoy
resource project Media and Technology
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
DATE: -
TEAM MEMBERS: Yasmin Kafai Karen Elinich Orkan Telhan
resource project Media and Technology
This media and research project will develop and study the use of new media, broadcast television, and social networks to introduce Citizen Science to a national audience, and motivate their direct involvement and participation. Project deliverables will include: four nationally-distributed public TV programs hosted by Waleed Abdalati, Director of CIREs at the University of Boulder and former NASA Chief Scientist; online videos for training and outreach of citizen science partners; digital engagement via social media; and a custom-designed application ('2nd screen app') that enables users to obtain additional informational content, share information, and connect with other viewers. The evaluation and research study will build new knowledge on how these deliverables can motivate the public to become citizen science participants. The investigators estimate the four television programs will reach approximately 80% of U.S. television households. In addition, videos and other content will be distributed through channels such as iTunes, Hulu, Netflix, and social media. Target audiences will include the general public, citizen science activists, and professional scientists. Underrepresented groups will be reached through special Google Hangouts, and professional societies such as SACNAS and AGU. The research components of the project will provide evidence on how traditional researchers respond to citizen science, and explore the deliverables' use as recruitment tools for citizen science projects and impacts on viewers' attitudes, behaviors, and skills related to citizen science. Data will be collected from multiple sources, including online surveys, in-person focus groups, and analyses of users' online postings. Retrospective surveys will be administered to explore changes in behavior regarding whether respondents have increased their interaction with professional scientists, or participated in citizen science initiatives. A quasi-experimental study will be conducted to assess the value added by the 2nd screen app.
DATE: -
TEAM MEMBERS: Geoffrey Haines-Stiles Waleed Abdalati Erna Akuginow Camellia Sanford-Dolly
resource project Media and Technology
This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille, developed and studied by the Concord Consortium, is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, developed and studied by Numedeon, Inc., an educational virtual word in which students can engage in a wide variety of science activities and games. Genivers has been extensively researched in its implementation in the middle school science classroom. Research on Whyville has focused on how the learning environment supports the voluntary participation of students anywhere and anytime. This project seeks to develop an understanding of how these two interventions can be merged together and to explore mechanisms to create engagement and persistence through incentive structures that are interwoven with the game activities. The project examines the evidence that students in middle schools in Boston learn the genetics content that is the learning objective of GeniVille. The project uses an iterative approach to the modification of Geniverse activites and the Whyville context so that the structured learning environment is accessible to students working collaboratively within the less structured context. The modification and expansion of the genetics activities of the project by which various inheritance patterns of imaginary dragons are studied continues over the course of the first year with pilot data collected from students who voluntarily engage in the game. In the second year of the project, teachers from middle schools in Boston who volunteer to be part of the project will be introduced to the integrated learning environment and will either use the virtual learning environment to teach genetics or will agree to engage their students in their regular instruction. Student outcomes in terms of engagement, persistence and understanding of genetics are measured within the virtual learning environment. Interviews with students are built into the GeniVille environment to gauge student interest. Observations of teachers engaging in GeniVille with their students are conducted as well as interviews with participating teachers. This research and development project provides a resource that blends together students learning in a computer simulation with their working in a collaborative social networking virtual system. The integration of the software system is designed to engage students in learning about genetics in a simulation that has inherent interest to students with a learning environment that is also engaging to them. The project leverages the sorts of learning environments that make the best use of online opportunities for students, bringing rich disciplinary knowledge to educational games. Knowing more about how students collaboratively engage in learning about science in a social networking environment provides information about design principles that have a wide application in the development of new resources for the science classroom.
DATE: -
TEAM MEMBERS: Paul Horwitz Jennifer Sun