This project examines the design principles by which computer-based science learning experiences for students designed for classroom use can be integrated into virtual worlds that leverage students' learning of science in an informal and collaborative online environment. GeniVille, developed and studied by the Concord Consortium, is the integration of Geniverse, a education based game that develops middle school students' understanding of genetics with Whyville, developed and studied by Numedeon, Inc., an educational virtual word in which students can engage in a wide variety of science activities and games. Genivers has been extensively researched in its implementation in the middle school science classroom. Research on Whyville has focused on how the learning environment supports the voluntary participation of students anywhere and anytime. This project seeks to develop an understanding of how these two interventions can be merged together and to explore mechanisms to create engagement and persistence through incentive structures that are interwoven with the game activities. The project examines the evidence that students in middle schools in Boston learn the genetics content that is the learning objective of GeniVille. The project uses an iterative approach to the modification of Geniverse activites and the Whyville context so that the structured learning environment is accessible to students working collaboratively within the less structured context. The modification and expansion of the genetics activities of the project by which various inheritance patterns of imaginary dragons are studied continues over the course of the first year with pilot data collected from students who voluntarily engage in the game. In the second year of the project, teachers from middle schools in Boston who volunteer to be part of the project will be introduced to the integrated learning environment and will either use the virtual learning environment to teach genetics or will agree to engage their students in their regular instruction. Student outcomes in terms of engagement, persistence and understanding of genetics are measured within the virtual learning environment. Interviews with students are built into the GeniVille environment to gauge student interest. Observations of teachers engaging in GeniVille with their students are conducted as well as interviews with participating teachers. This research and development project provides a resource that blends together students learning in a computer simulation with their working in a collaborative social networking virtual system. The integration of the software system is designed to engage students in learning about genetics in a simulation that has inherent interest to students with a learning environment that is also engaging to them. The project leverages the sorts of learning environments that make the best use of online opportunities for students, bringing rich disciplinary knowledge to educational games. Knowing more about how students collaboratively engage in learning about science in a social networking environment provides information about design principles that have a wide application in the development of new resources for the science classroom.
This paper examines how students, teachers, and parents evaluate residential fieldwork courses. As in prior research, findings from questionnaire data indicate that fieldwork effects social, affective, and behavioural learning. More surprisingly, focus group interviews captured increases in cognitive learning as well. This paper underscores the value of out-of-school experiences, particularly for students from under-resourced backgrounds.
NOVA Labs (pbs.org/nova/labs) is a free digital platform that engages teens and lifelong learners in activities and games that foster authentic scientific exploration. From building RNA molecules and designing renewable energy systems to tracking cloud movements and learning cybersecurity strategies, NOVA Labs participants can take part in real-world investigations by visualizing, analyzing, and playing with the same data that scientists use. Each Lab focuses on a different area of active research. But all of them illustrate key concepts with engaging and informative videos, and guide participants as they answer scientific questions or design solutions to current problems. Supporting pages on each Lab site explain the purpose and functions of the Lab, help teachers incorporate it into their classrooms, foster collaboration between users, and help users make connections to the broader world of STEM. Users are encouraged to explore potential career paths through “Meet the Scientists” profiles, and to obtain information about local and national STEM resources.
This poster was presented at the 2014 AISL PI Meeting. It describes a project that creates experiences in herpetology (the study of reptiles and amphibians) for rural underrepresented groups.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a project that engages underserved Native and non-native youth and adults in environmental science content and awareness through innovative exhibitions and hands-on activities. Traditional ecological knowledge (TEK) and western science are communicated and promoted within culturally relevant contexts as valuable, complementary ways of knowing, understanding, and caring for the world. OMSI, partner institutions, Native scientists, tribal museum partners, exhibit developers, advisors, and members of Native
DATE:
TEAM MEMBERS:
Oregon Museum of Science and IndustryVictoria Coats
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a citizen science project that developed a question-driven online bird identification tool called "Merlin".
Project STEAM aims to inspire art-interested girls to enter STEM careers through a series of activities, including summer academies that explore the biology and physics of color, science café-style presentations that feature the overlap between art and science, and the development of “kits” that can be used in informal and formal venues (Girl Scouts, science centers, and K-12 classrooms). Project research explores two questions: 1) How does an art-focused approach (STEAM) to teaching science support engagement in scientific practices such as experimentation, observation, and communication of
DATE:
TEAM MEMBERS:
University of Alaska, FairbanksLaura Conner
Students with strong religious views may adopt a variety of positions on the scientific concept of evolution. The attempts students make to address potential mismatches between their religious and scientific viewpoints influence their learning approaches. This Yasri and Mancy paper presents five ways in which young people reconcile evolution and religion,and discusses the implications for educators.
Despite increasing interest in the educational potential of outdoor learning experiences, limited research has focused on assessing and identifying “good” outdoor education practice. In this paper, the authors propose a theoretically based practical framework for assessing field trips in nature parks and other outdoor settings. The framework was developed and refined during the course of observations of 22 field trips and interviews with 41 students.
In this review paper, Oliver calls for greater cross-pollination between neuroscience research and educational practice. She asks, “What can educators learn from an understanding of educational neuroscience?”
Field trips are a popular method for introducing students to concepts, ideas, and experiences that cannot be provided in a classroom environment. This is particularly true for trans-disciplinary areas of teaching and learning, such as science or environmental education. While field trips are generally viewed by educators as beneficial to teaching and learning, and by students as a cherished alternative to classroom instructions, educational research paints a more complex picture. At a time when school systems demand proof of the educational value of field trips, large gaps oftentimes exist
The authors explored the perceived effects of an environmental expressive writing exercise by using a modified phenomenological method. The authors asked preservice teachers enrolled in a required public university science and society education course to compose multigenre compositions describing personal environmental impacts, followed by written reactions to the assignment. A group of 5 students from the course participated in interviews in which the authors investigated their backgrounds, attitudes, and experiences related to the expressive writing project. Analysis of the participants'