Skip to main content

Community Repository Search Results

resource project Media and Technology
Mid-America Science Museum will implement a professional development program for its education staff and those from member museums of the Arkansas Discovery Network. Museum staffers will participate in a series of three day-long workshops on robotics, app development, and microprocessors. Workshop follow-up will be in the form of strategically scheduled internet-based meetings, an online community, and various methods of evaluation. The program will provide up-to-date professional development and training in newer technologies for educators in the museum and from across Arkansas. Training will encourage these educators to develop their own activities to increase audience engagement and use modern technology to create powerful professional development opportunities for teachers. The project will advance the museum's strategic goal of being a leader in informal science education and creating professional development opportunities for museum educators across the region.
DATE: -
TEAM MEMBERS: Jeremy Mackey
resource research Media and Technology
The goal of our project is to develop strategies that effectively engage autistic adolescents in informal STEM learning opportunities that promote the self-efficacy and interest in STEM careers that will empower them to seek out career opportunities in STEM fields. The research aims are to: 1. Identify evidence-based strategies to engage autistic youth in informal STEM learning opportunities that are well matched to their attentional profiles: Hypothesis 1: Pedagogical strategies vary in how engaging they are for people with diverse attentional profiles; people with more focused
DATE:
TEAM MEMBERS: Katie Gillespie Amy Hurst Beth Rosenberg Jessye Herrell Eliana Grossman Sharang Biswas Eunju Pak Cristina Ulerio Ariana Riccio Jin Delos Santos Patrick Dwyer Sergey Shevchuk-Hill Wendy Martin Lillian Hwang-Geddes Bella Kofner Rheniela Faye Concepcion Theresa Major Saumya Dave Kyle Gravitch Terrance Bobb
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Since 2006, the National High Magnetic Field Laboratory (MagLab) through the Center for Integrating Research and Learning (CIRL) has offered a SciGirls Summer Camp to introduce middle school girls to various fields of science. Code: SciGirls was created in 2017 to increase the engagement in computer science studies and career paths for girls. This consistent commitment to girls in STEM led the SciGirls creators at Twin Cities Public Television (TPT) to invite CIRL to be a partner with them. In the summer of 2021, CIRL & TPT
DATE:
TEAM MEMBERS: Carlos Villa Rita Karl Brooke Hobbes A. Troy Roxanne Hughes
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Makerspaces and making-related programs are often inaccessible, unaffordable, or simply not available to underserved youth. This three-year, Innovations in Development project involves partnership with four Recreation Centers (two each in Baltimore and Pittsburgh) to (1) train educators in equity-oriented approaches to making, (2) create four learning hubs, (3) develop and test equity-based curricula in each space, and (4) establish a replicable Localization Toolkit for future implementation in other communities.
DATE:
TEAM MEMBERS: Andrew Coy Foad Hamidi
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Today’s young people have a personal stake in their ability to function with data. Future job prospects might hinge on their ability to participate in the new data economy. But equally, young people are themselves the subjects of data. The datafication of young people’s lives leads to profound questions about childhood, technology, and the equity of access to STEM learning around data, one of which is this: How might young people be empowered in a data-centric world?
DATE:
TEAM MEMBERS: Leanne Bowler Mark Rosin Irene Lopatovska
resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

The Accessible Oceans study will design auditory displays that support learning and understanding of ocean data in informal learning environments like museums, science centers, and aquariums. Most data presentations in these spaces use visual display techniques such as graphs, charts, and computer-generated visualizations, resulting in inequitable access for learners with vision impairment or other print-related disabilities. While music, sound effects, and environmental sounds are sometimes used, these audio methods are inadequate for conveying quantitative information. The project will use sonification (turning data into sound) to convey meaningful aspects of ocean science data to increase access to ocean data and ocean literacy. The project will advance knowledge on the design of auditory displays for all learners, with and without disabilities, as well as advance the use of technology for STEM formal and informal education. The study will include 425 participants but will reach tens of thousands through the development of education materials, public reporting, and social media. The study will partner with the Smithsonian National Museum of Natural History, Woods Hole Oceanographic Institution Ocean Discovery Center, the Georgia Aquarium, the Eugene Science Center, the Atlanta Center for the Visually Impaired, and Perkins School for the Blind.

The project will leverage existing educational ocean datasets from the NSF-funded Ocean Observatories Initiative to produce and evaluate the feasibility of using integrated auditory displays to communicate tiered learning objectives of oceanographic principles. Integrated auditory displays will each be comprised of a data sonification and a context-setting audio introduction that will help to make sure all users start with the same basic information about the phenomenon. The displays will be developed through a user-centered design process that will engage ocean science experts, visually impaired students and adults (and their teachers), and design-oriented undergraduate and graduate students. The project will support advocacy skills for inclusive design and will provide valuable training opportunities for graduate and undergraduate students in human-centered design and accessibility. The project will have foundational utility in auditory display, STEM education, human-computer interaction, and other disciplines, contributing new strategies for representing quantitative information that can be applied across STEM disciplines that use similar visual data displays. The project will generate publicly accessible resources to advance studies of inclusive approaches on motivating learners with and without disabilities to learn more about and consider careers in STEM.

This Pilots and Feasibility Studies project is supported by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Amy Bower Carrie Bruce Jon Bellona
resource project Media and Technology
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Quantum information science (QIS) is an emergent cross-disciplinary field at the interface of physics, computer science, materials science, and engineering. Yet, there are few educational programs that encourage young people to explore QIS and understand its applications and societal benefits. Such programs are critical for supporting the growth of a quantum-ready workforce. Building intuition is a foundational first step but this is challenging because quantum effects are neither visible to the naked eye, nor experienced in everyday life. This project will create a suite of accessible, engaging digital games for middle schoolers, and study their effectiveness in cultivating intuition around QIS. Relating QIS concepts to common game mechanics is designed to increase students’ confidence in their QIS knowledge, reduce their fear of tackling such a subject, and consider pursuing a career in this field or another STEM area. The game-driven design appeals to a broad population beyond the age groups studied. Moreover, the deliverables will be freely available online, which allows anyone with a phone or computer and internet access a way to learn about QIS in an engaging, play-based environment. The program will partner with teacher organizations and other community groups to share the games, maximizing the project’s impact.

The project is guided by the QIS Key Concepts developed in 2020, as well as research and best practices on gamification of learning. The games will be designed for 6th-8th grade students in an informal setting, focusing on the concepts of probability, superposition, and role of measurement. A game world titled "Quander" will include videos that explicitly tie game experiences to QIS concepts and applications. The project will evaluate students' understanding after playing the games and watching the videos, how they engage with aspects of the games, and how the game impacted their interest in QIS. The project data will advance understanding of how to facilitate QIS informal learning experiences in ways that engage young audiences in QIS and similar abstract emerging areas of technology where current research is scant. This project represents one of the first efforts to teach QIS concepts in ways that connect directly to young learners’ play-based experiences. Data gathered from the project will help future program designers understand the ability of young learners to reason about QIS concepts such as measurement, superposition and probabilities in game contexts, providing insights to the ages at which students are ready for more technical content.
DATE: -
TEAM MEMBERS: Diana Franklin Emily Edwards Danielle Harlow
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Informal/Formal Connections
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.

This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
DATE: -
TEAM MEMBERS: Apriel Hodari Maria Ong
resource project Informal/Formal Connections
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.

This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
DATE: -
TEAM MEMBERS: Apriel Hodari Maria Ong
resource research Informal/Formal Connections
Counterspaces in science, technology, engineering, and mathematics (STEM) are often considered “safe spaces” at the margins for groups outside the mainstream of STEM education. The prevailing culture and structural manifestations in STEM have traditionally privileged norms of success that favor competitive, individualistic, and solitary practices—norms associated with White male scientists. This privilege extends to structures that govern learning and mark progress in STEM education that have marginalized groups that do not reflect the gender, race, or ethnicity conventionally associated with
DATE:
TEAM MEMBERS: Maria Ong Janet Smith Lily Ko
resource research Informal/Formal Connections
Overlaying Computer Science (CS) courses on top of inequitable schooling systems will not move us toward “CS for All.” This paper prioritizes the perspectives of minoritized students enrolled in high school CS classrooms across a large, urban school district in the Western United States, to help inform how CS can truly be for all.
DATE:
TEAM MEMBERS: Jean Ryoo Tiera Tanksley Cynthia Estrada Jane Margolis