The following is one of three focus point presentations delivered as part of the session titled “Citizen Science Project Design” on day two of the Citizen Science Toolkit Conference at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007. Sandra Henderson, UCAR Citizen Science Programs Manager, discusses two citizen science campaigns, GLOBE at Night and Project BudBurst. Henderson reviews some concerns about data quality and lessons learned on data verification. Henderson also introduces a new project called Great World Side Star Count.
DATE:
TEAM MEMBERS:
Sandra Henderson
resourceresearchProfessional Development, Conferences, and Networks
This recap poses provocations or questions in response to four presentations delivered as part of the session titled “Citizen Science Project Design” on day two of the Citizen Science Toolkit Conference at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007. Martin Storksdieck, Director of Project Development at the Institute for Learning Innovation, summarizes the key elements of citizen science projects and poses questions for the field.
Capitalizing on the appeal of the PBS KIDS project PLUM LANDING, PLUM RX will research and develop resources to help families and educators infuse environmental science learning into outdoor prescription programs, while ensuring they are appropriate for broad use in other informal settings. The growing outdoor prescription movement is designed to increase the amount of time children spend outside in nature. Programs are structured so that health care providers write "prescriptions" for children to engage in outdoor activity, and informal educators "fill" these prescriptions by facilitating youth and family participation in outdoor activities. There is preliminary evidence that these programs are getting kids outside, but best practices for transitioning "get outside" programs to become "get outside and learn about the environment" programs remain unidentified. PLUM RX is designed to build this knowledge and create resources that are responsive to the needs of both English and Spanish-speaking urban families. The project will work with informal educators and families through multiple cycles of implementation and revision, testing and refining PLUM LANDING resources (animations, videos, games, hands-on science activities, and support materials for informal educators and families), with the goal of designing an effective and accessible PLUM RX Toolkit for national dissemination. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. The proposed research is designed to ensure that the PLUM RX Toolkit--the resources and support materials--will meet the needs of educators working in non-specialized urban settings. Education Development Center (EDC) and WGBH developers will collaborate on design-based research at three urban outdoor prescription programs serving low-income families: Philadelphia Nature Rx in Philadelphia, PA; Outdoors Rx in Boston, MA; and Portland Rx Play in Portland, OR. Moving through cycles of implementation, observation, analysis, and revision, the research team will work closely with educators, families, and developers to determine how the programmatic and structural features of the learning environment, the actions of the educators, and the intervention itself can most effectively support children and families' outdoor exploration in urban contexts. Toolkit materials will include resources for kids and families (including Spanish-speaking families) and informal educators (including those who work with families and directly with children in out-of-school settings). Directors from the three urban outdoor prescription programs will contribute to every phase of the research process, including recruiting families and youth who will participate in a weekly sequence of activities. The overarching focus of the analysis process will be on systematically describing the interaction between two dimensions of implementation: What happened during pilot implementations, and the factors that constrained or supported implementation as planned; and the quality of what happened, which will be defined with reference to the intended impacts. EDC will use a structured descriptive coding process to analyze the qualitative evidence gathered through interviews and observations during design and testing periods. Products of the research activities will include: a series of formative memos to the development team; a report mapping changes made to PLUM RX Toolkit materials in response to formative input and the intended impact of those changes; and findings regarding commonalities and differences across sites in the interaction of local contextual factors and the implementation success of the PLUM RX Toolkit. Concord Evaluation Group (CEG) will provide independent, summative evaluation of the project. Through this process, PLUM RX will build broader knowledge about how to design educational resources, geared for both families and informal educators, which respond to the unique challenges of exploring environmental science in urban environments.
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that shows the possibilities of the proposed new type of learning technology, and PI teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and that allows them to answer questions about how people learn, how to foster or assess learning, and/or how to design for learning. This project is building and studying a new type of online learning community. The WeatherBlur community allows kids, teachers, scientists, fishermen/fisherwomen, and community members to learn and do science together related to the local impacts of weather and climate on their coastal communities. Members of the community propose investigations, collect and share data, and learn together. WeatherBlur is designed to be a new form of knowledge-building community, the Non-Hierarchical Online Learning Community. Unlike other citizen science efforts, there is an emphasis on having all members of the community able to propose and carry out investigations (and not just help collect data for investigations designed by expert scientists or teachers). Prior research has demonstrated important structural differences in WeatherBlur from other citizen science learning communities. The project will use social network analysis and discourse analysis to measure learning processes, and Personal Meaning Mapping and embedded assessments of science epistemology and graph interpretation skills to examine outcomes. The measures will be used to explore knowledge-building processes and the scaffolds required to support them, the negotiation of explanations and investigations across roles, and the epistemic features that drive this negotiation process. The work will be conducted using an iterative design-based research process in which the prior functioning WeatherBlur site will be enhanced with new automated prompt and notification systems that support the non-hierarchical nature of the community, as well as tools to embed assessment prompts that will gauge participants' data interpretation skills and epistemic beliefs. Exponential random graph modeling will be used to analyze the social network analysis data and test hypotheses about the relationship between social structures and outcomes.
This Stocklmayer, Rennie, and Gilbert article outlines current challenges in preparing youth to go into science careers and to be scientifically literate citizens. The authors suggest creating partnerships between informal and formal education to address these challenges in school.
To address the Informal Science Learning for Indigenous communities raises a number of issues. What is “informal” and how does this notion influence the everyday lived lives of Indigenous peoples? Can we separate the informal from the formal, and is the nexus of the two a productive place from which to explore, teach, and pursue science in Indigenous communities? This commissioned paper attempts to begin addressing these questions.
DATE:
TEAM MEMBERS:
Bryan Mckinely Jones BrayboyAngelina Castagno
The National Research Council's Roundtable on Public Interfaces of the Life Sciences held a 2-day workshop on January 15-16, 2015, in Washington, DC to explore the public interfaces between scientists and citizens in the context of genetically engineered (GE) organisms. The workshop presentations and discussions dealt with perspectives on scientific engagement in a world where science is interpreted through a variety of lenses, including cultural values and political dispositions, and with strategies based on evidence in social science to improve public conversation about controversial topics
Gruenewald blends critical pedagogy and place-based education into a critical pedagogy of place. Critical pedagogies challenge the assumptions implicit in the dominant culture. Place-based education aims to educate citizens so they can influence their social and ecological spaces. Together, these perspectives provide a framework that enables citizens to act both locally and globally to protect their cultures and environments.
Mobile technology can be used to scaffold inquiry-based learning, enabling learners to work across settings and times, singly or in collaborative groups. It can expand learners’ opportunities to understand the nature of inquiry whilst they engage with the scientific content of a specific inquiry. This Sharples et al. paper reports on the use of the mobile computer-based inquiry toolkit nQuire. Teachers found the tool useful in helping students to make sense of data from varied settings.
The World Biotech Tour (WBT) is a multi-year initiative that will bring biotechnology to life at select science centers and museums worldwide. The program, supported by the Association of Science-Technology Centers (ASTC) and Biogen Foundation, is scheduled to run from 2015-2017, with the 2015 cohort in Belgium, Japan, and Portugal. The WBT will increase the impact and visibility of biotechnology among youth and the general public through hands-on and discussion-led learning opportunities. Applications are now open for the 2016 cohort! Learn more and submit an application at http://www.worldbiotechtour.org/become-a-stop
DATE:
-
TEAM MEMBERS:
Association of Science-Technology CentersCarlin Hsueh
Dinosaur Island is a 3D computer simulation with herds of sauropods and ceratopsians, flocks of pteranodons, hunting packs of carnivores and authentic plants and trees from over 65 million years ago all controlled by the user. You can think of Dinosaur Island as a digital terrarium in which a balance between the species and their diets must be maintained or the ecosystem will collapse. It is up to the user to determine how many and what kinds of dinosaurs and plants populate the island. Start off simple with just a few sauropods and some plants; but you better make sure that those big plant-eaters have the right food to eat. Did you know that many of the plants from the Jurassic were poisonous? You also need to make sure that there are some carnivores around to keep those sauropod herds in check; otherwise they will quickly outstrip their food supplies. Dinosaur Island is an Adventure: Yes, it is a bit like those famous movies because you can take 'photographs' of your dinosaurs, save them, post them and share them with your friends (you can even 'name' your dinosaurs, 'tag' them and track them throughout their lives). You will be able to walk' with the dinosaurs without being trampled under their giant feet. You will be able to follow along when a female T-Rex goes out to hunt without fear of becoming dinner for her family. You will be able to 'garden' by 'planting' vegetation where you like and watch the plants grow over time. Dinosaur Island is Educational: Our reputation – both in our 'serious games' and our contracted simulations – is for historical accuracy. All of our computer games, serious games and simulations are meticulously researched. Dinosaur Island will also include an extensive hyperlinked interactive 'booklet' about the dinosaurs that live on Dinosaur Island, their habitat and the plants and vegetation that grow there. Designasaurus, the game that we created in 1987, was named Educational Game of the Year. We will exploit the computer environment that is now available (more memory and faster machines allow for 3D rendering) to make Dinosaur Island even more of an immersive educational experience. Dinosaur Island is Fun: Playing with herds of dinosaurs is just good fun. You can 'pick them up' and move them around, plant crops for them to eat or you can even 'get inside' a dinosaur and control its actions. Regardless of your age, Dinosaur Island is guaranteed to be hours of fun.
Project Exploration’s week-long summer Environmental Adventurers program immersed eleven Chicago Public School middle and high school students into the world of urban bees and biodiversity research. We employed a place-based approach to ground learning experiences and exploration within uniquely urban spaces. Students used mobile technology to explore the environment, document native bees, and engage in authentic fieldwork research and data analysis. Students maximized the potential of the technology in ways that forced program leaders to rethink the potential of mobile technology as an
DATE:
TEAM MEMBERS:
Jameela JafriGabrielle LyonStephanie MadziarRebecca ToniettoProject ExplorationChicago Botanic GardenNorthwestern University