A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE:
-
TEAM MEMBERS:
Folashade Cromwell SolomonTracey WrightLawrence Pratt
The Exploratorium’s livestream of the August 2017 Total Solar Eclipse reached over 63 million people. Live programs in English and Spanish provided an informal learning experience outside the museum. Over 2.75 million people viewed on-demand videos on eclipse science. Sixty major media providers rebroadcast the livestream telescope feed.
Edu, Inc. conducted a summative evaluation of the NASA-funded project. The study reveals that the Exploratorium successfully disseminated eclipse science and STEM content through media channels and a mobile app, delivering a museum experience to online
In March of 2016, a total solar eclipse occurred in the southwestern pacific; and in August of 2017, a total solar eclipse occurred across a broad swath of the United States. The Exploratorium launched a 2.5 year public education program—Navigating the Path of Totality—that used these two total solar eclipses as platforms for sparking public engagement and learning about the Sun, heliophysics, and the STEM content related to both. These sequential eclipses provided an unprecedented opportunity to build and scaffold public engagement and education. Our strategy was to start the public engagement process with the 2016 eclipse, nurture that engagement with resources, activities and outreach during the 17 months between the eclipses, so that audiences (especially in the U.S., where totality was visible in multiple areas across the country) would be excited, actively interested, and prepared for deeper engagement during the 2017 eclipse. For the August 2017 eclipse, the Exploratorium produced live telescope and program feeds from Madras, OR and Casper, WY. The Exploratorium worked with NASA to leverage what was a once-in-a-lifetime experience for millions to bring heliophysics information and research to students, educators, and the public at large through a variety of learning experiences and platforms.
The core of this project was live broadcasts/webcasts of each eclipse. To accomplish these objectives, the Exploratorium produced and disseminate live feeds of telescope-only images (no commentary) of each eclipse originating them from remote locations; produce and disseminate from the field live hosted broadcasts/webcasts of each eclipse using these telescope images; design and launch websites, apps, videos, educator resources, and shareable online materials for each eclipse; design and deliver eclipse themed video installations for our Webcast studio and Observatory gallery in the months that lead up to each eclipse and a public program during each eclipse; and conduct a formative and summative evaluation of the project.
These broadcasts/webcasts and pre-produced videos provide the backbone upon which complementary educational resources and activities can be built and delivered. Programs and videos were produced in English and Spanish languages. As a freely available resource, the broadcasts/webcasts also provide the baseline content for hundreds if not thousands of educational efforts provided by other science-rich institutions, schools, community-based organizations, and venues. Platforms such as NASA TV and NASA website, broadcast and online media outlets such as ABC, NBC, CBS, CNN, MSNBC and PBS, as well as hundreds of science institutions and thousands of classrooms streamed the Exploratorium eclipse broadcasts as part of their own educational programming, reaching 63M people. These live broadcasts were relied upon educational infrastructure during total solar eclipses for institutions and individuals on the path and off the path alike.
The evaluation study supports the project Distance Learning Education Programs at the Saint Louis Zoo. To better understand what teachers want and need, and the characteristics of the settings in which their students learn, the Zoo conducted an online survey of the teachers of students with special needs in May 2014. The purpose of this evaluation was to clarify and expand the survey findings to support the design, development, and implementation of the Zoo distance learning curriculum so that it works effectively across a variety of school settings for K12 students with special needs and
The Society for Science and the Public’s Advocate Grant Program provides selected Advocates with funding, resources, and information. Advocates include classroom teachers, school and district administrators, university professors, and informal science educators in community-based programs. The role of the Advocate is to support three or more underserved middle or high school students in the process of advancing from conducting a scientific research or engineering design project to entering a scientific competition. Advocates receive a stipend of $3,000; opportunities to meet and interact with
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Blind youth are generally excluded from STEM learning and careers because materials for their education are often composed for sighted individuals. In this proposed Innovations in Development project, the PIs suggest that spatial acuity is an important element in order for blind persons to understand physical and mental structures. Thus, in this investigation, efforts will be made to educated blind youth in the discipline of engineering. A total of 200 blind students, ages 12-20 along with 30 informal STEM educators will participate in the program. This effort is shared with the National Federation of the Blind, Utah State University, the Science Museum of Minnesota, and the Lifelong Learning Group.
The National Federation of the Blind, in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota will develop a five-year Innovations in Development project in order to broaden the participation of blind students in STEM fields through the development of instruction and accessible tools that assess and improve the spatial ability of blind youth. The partnership with the Science Museum will facilitate the creation of informal science content for students and professional development opportunities for informal educators. Evaluation will be conducted by Lifelong Learning Group of the Columbus Center of Science and Industry. Activities will begin in year one with a week-long, engineering design program for thirty blind high-school students at the Federation of the blind headquarters in Baltimore. Year two will feature two similarly sized programs, taking place at the Science Museum. While spatial ability is linked to performance in science, research has not been pursued as to how that ability can be assessed, developed, and improved in blind youth. Further, educators are often unaware of ways to deliver science concepts to blind students in a spatially enhanced manner, and students do not know how to advocate for these accommodations, leading blind youth to abandon science directions. Literature on the influences of a community of practice on youth with disabilities, as well as nonvisual tools for experiencing engineering, is lacking. This project will advance understanding of how blind people can participate in science, and how spatial ability can be developed and bolstered through informal engineering activities and an existing community of practice.
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.
In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE:
-
TEAM MEMBERS:
David ShafferKristen ScopinichHolly GibbsJeffrey Linderoth
Often called "self-plagiarism," text recycling occurs frequently in scientific writing. Over the past decade, increasing numbers of scientific journals have begun using plagiarism detection software to screen submitted manuscripts. As a result, large numbers of cases of text recycling are being identified, yet there is no consensus on what constitutes ethically acceptable practice. Text recycling is thus an increasingly important and controversial ethical issue in scientific communication. However, little actual research has been conducted on text recycling and it is rarely addressed in the ethical training of researchers or in scientific writing textbooks or websites. To promote the ethical and appropriate use of text recycling, this project will be conducted in two phases: In Phase 1, the researchers will investigate the ethical, practical, and legal aspects of text recycling as relevant for professional researchers, students, and publishers. In Phase 2, the investigators will produce educational materials and develop model language for text recycling guidelines and author-publisher contracts that can be adapted by educational institutions, research organizations, and publishers.
This project is a multi-institutional, multidisciplinary investigation of text recycling, the reuse of material from one?s previous work in a new manuscript. In Phase 1, the researchers will investigate questions such as these: What do expert researchers, students, and others involved in scientific communication believe to be appropriate practice, and why? Where is there a clear consensus among experts and where is there substantive disagreement? How often do professional scientists actually recycle material, and in what ways? Under what circumstances does text recycling violate publisher contracts or copyright laws? One facet of this research will involve interviewing and surveying experienced STEM faculty, students, journal editors, and others regarding the ethics of text recycling. A second facet will analyze a corpus of published scientific papers to investigate how researchers recycle text in practice and how this has changed over time. The third facet involves analyzing publisher contracts to better understand the rights of publishers and authors regarding text recycling and to assess their legal validity. In Phase 2, the investigators will use findings from Phase 1 to develop, test, and disseminate two kinds of materials: The first are web and print based instructional materials for STEM students (and others new to STEM research) explaining the ethical, legal, and practical issues involved with text recycling, as well as accompanying documents for faculty, administrators, and librarians. The second are model policies and guidelines for text recycling that address appropriate practice in both academic and professional settings. The investigators will obtain feedback on drafts of these materials from potential users and revise them accordingly, after which they will be disseminated.
Lineage is a comprehensive educational media and outreach initiative that will engage individuals and families in learning about deep time and evolution, helping audiences come to newfound understandings of the connections between the past, present, and future of life on Earth. The project is a partnership between Twin Cities PBS (TPT) and the Smithsonian Institution's National Museum of Natural History and is linked to the opening of that museum's new Deep Time Fossil Hall in June 2019. The project includes a two-hour film for national broadcast on PBS, and a 20-minute short version for exhibition in science centers. The documentaries will show how scientists, using paleontology, genetics, earth science and other disciplines, can reconstruct in detail the origins of living animals like birds and elephants, revealing their ancient past as well as evidence of ecological change that can inform our understanding of Earth today. Extensive educational outreach will include the creation of "Bone Hunter," an innovative VR (Virtual Reality) game designed for family co-play that engages multiple players in the process of paleontology as they piece together a fossil in a digital lab. Bone Hunter and other collaborative educational activities will be deployed at Family Fossil Festivals that will attract multi-generational learners. One such Festival will take place at the Smithsonian Institution in Washington, D.C., while others will be based at geographically diverse institutions that serve underserved rural as well as urban communities. Lineage is a collaboration between national media producers, noted learning institutions and researchers, including Twin Cities Public Television, the Smithsonian Institution / National Museum of Natural History, Schell Games, the Institute for Learning Innovation (ILI), and Rockman et al. One of the project's primary innovations is its exploration of new learning designs for families that use cutting-edge technologies (e.g. the Bone Hunter virtual reality game) and collaborative multi-generational learning experiences that advance science knowledge and inquiry-based learning. An external research study conducted by ILI will investigate how intergenerational co-play with physical artifacts compared to virtual artifacts influences STEM (Science Technology Engineering Mathematics) learning and engagement. The findings will lead to critical strategic impacts for the field, building knowledge about ongoing innovation in the free choice learning space. The project's external evaluation will be conducted by Rockman et al and evaluative findings, as well as the educational materials derived from the project, will be widely disseminated through partnerships with professional and educator groups. Clips from the Lineage film and related learning resources will be hosted on PBS LearningMedia, so educators can incorporate these resources into their classrooms, and students and lifelong learners can explore and discover on their own. The project outcomes will have broad impact on public audiences, deepening and advancing knowledge and understanding about important scientific concepts, and promoting continued, family-based collaborative learning experiences to expand and deepen STEM knowledge. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal Science Learning program funds innovative research, approaches and resources for use in a variety of settings. This Exploratory Pathways project brings together scientists and science curriculum experts with field station leaders to study informal science learning at biological field stations. The objective is to understand and evaluate the unique qualities of field stations as centers of informal and enduring science learning for the non-science community. There are over 400 field stations and represent a science communication mechanism that if available to most US citizens. This project is a collaboration between Texas A&M University and Colorado State University.
Field stations typically engage in informal science learning. While there are great examples of informal learning through outreach activities at field stations, little is known about what is happening in the aggregate at these establishments. This project documents the outreach work of field stations and explores the connections between how the outreach activities engage learners, incorporate science topics, and address science learning. By creating an Outreach Ontology, a multidimensional framework around the outreach activities, this work provides a valuable resource and reference to informal science researchers who seek to understand what informal learning projects are undertaken at field stations, and how these activities fit into the broader context of informal science learning. This project will help field stations collaborate on improving informal STEM learning activities by bringing them together to discuss their efforts and by developing a publicly available, searchable database detailing their activities. A particular benefit to advancing informal STEM learning by investigating field stations is the broad range of people and communities that are involved with and affected by field station outreach activities.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This Research in Service to Practice project will address the issues around Informal Education of rural middle school students who have high potential regarding academic success in efforts to promote computer and IT knowledge, advanced quantitative knowledge, and STEM skills. Ten school districts in rural Iowa will be chosen for this study. It is anticipated that new knowledge on rural informal education will be generated to benefit the Nation's workforce. The specific objectives are to understand how informal STEM learning shapes the academic and psychosocial outcomes of rural, high-potential students, and to identify key characteristics of successful informal STEM learning environments for rural, high-potential students and their teachers. The results of this project will provide new tools for educators to increase the flow of underserved students into STEM from economically-disadvantaged rural settings.
The President's Council of Advisors on Science and Technology predicts a rapid rise in the number of STEM jobs available in the next decade, describing an urgent need for students' educational opportunities to prepare them for this workforce. In 2014, 62% of CEOs of major US corporations reported challenges filling positions requiring advanced computer and information technology knowledge. The project team will use a mixed methods approach, integrating comparative case study and mixed effects longitudinal methods, to study the Excellence program. Data sources include teacher interviews, classroom observations, and student assessments of academic aptitude and psychosocial outcomes. The analysis and evaluation of the program will be grounded in understanding the local efforts of school districts to build curriculum responsive to the demands of their high-potential student body. The project design, and subsequent analysis plan, utilizes a mixed methods approach, incorporating case study and longitudinal quantitative methods to analyze naturalistic data and build robust evidence for the implementation and impact of this program. This project will provide significant insights in how best to design, implement, and support informal out-of-school learning environments to broaden participation in the highest levels of STEM education and careers for under-resourced rural students.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.
Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.