This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE:
-
TEAM MEMBERS:
Kurt ThoroughmanGregory DeAngelisRandy BucknerSteven PetersenDora Angelaki
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.
Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.
These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE:
-
TEAM MEMBERS:
Richard LadnerLibby CohenSheryl BurgstahlerWilliam McCarthy
The purpose of the summative evaluation is to two-fold: 1) provide documentation to NSF about the extent to which the project met its goals and objectives, and 2) give the Lab of Ornithology information about how well the Web application and the ecosystem within which it resides is engaging the intended audiences. The main evaluation questions the study needed to answer related to who is participating in YardMap, how much participation affects participants’ knowledge, attitudes and behaviors around birding, gardening, and citizen science.
A true experimental design was used, where
Hidden Universe is a multi-faceted project built around production of a 2D/3D giant screen film. The goal is to inspire, engage, and excite viewers about the mysterious worlds hidden around us and the science and technology that reveal them. The film will illuminate natural wonders that are invisible to the naked eye, such as objects and processes that are too slow, too fast, and too small to be seen without advanced technologies. It will include nanoscience and microbiology research and developing wavelength technologies such as ultrafast lasers. The project will employ cutting-edge
Space Science Institute (SSI) is conducting an International Polar Year project in partnership with the Marine Advanced Technology Center (NSF-funded MATE, Monterey, CA) and the Challenger Learning Center of Colorado (CLCC) to produce and disseminate an online simulation of scientific explorations by the latest generation of Antarctic underwater remotely operated vehicles (ROV). The explorations are based on the ROV work of Dr. Stacey Kim of the Moss Landing Marine Laboratories and of Dr. Robert Pappalardo and Dr. Arthur Lane at the Jet Propulsion Lab. Products include the simulation, supporting materials and guides, a web site, and a CD Master. Targeted audiences include: (a) middle-school to college-aged students who participate in national annual underwater ROV competitions, (b) Challenger Learning Centers in Colorado and around the country, and (c) the "science attentive" public who will access the simulation via links to SSI and other web sites. Simulations will follow a game structure and feature Antarctic polar science. Estimated annual usage levels are: for MATE, 2000; for Challenger Centers, 300,000; for the general public, 100,000. The project is positioned to continue well beyond the official end of the International Polar Year
The Adler Planetarium, Johns Hopkins University, and Southern Illinois University-Edwardsville are investigating the potential of online citizen science projects to broaden the pool of volunteers who participate in analysis and investigation of digital data and to deepen volunteers' engagement in scientific inquiry. The Investigating Audience Engagement with Citizen Science project is administering surveys and conducting case studies to identify factors that lead volunteers to engage in the astronomy-focused Galaxy Zoo project and its Zooniverse extensions. The project is (1) identifying volunteers' motivations for joining and staying involved, (2) determining factors that influence volunteers' movement from lower to higher levels of involvement, and (3) designing features that influence volunteer involvement. The project's research findings will help informal science educators and scientists refine existing citizen science programs and develop new ones that maximize volunteer engagement, improve the user experience, and build a more scientifically literate public.
DATE:
-
TEAM MEMBERS:
Karen CarneyMichael RaddickPamela Gay
Sea Studios Foundation will extend the Strange Days on Planet Earth multimedia initiative to raise public science literacy on pressing environmental issues. Based on pioneering Earth System Science research, Phase Two will be a media and outreach project focused on the ocean and water issues. The goal of the project is to increase public awareness and understanding of the scope and scale of key issues affecting the ocean. At the core of the project is a four part television documentary series for PBS primetime entitled Strange Days, Ocean. The programs will concentrate on four content areas: overexploitation of ocean resources, pollution, coastal development, climate change and the role of the ocean in Earth's system. Each episode is structured around a compelling scientific questions designed to engage the audience in a search for answers based on the most current research from the varied Earth System Science disciplines. The series focuses on explaining how scientists come to know what they know. The series will be complemented by activity-based learning supported by a national consortium of informal learning institutions, a citizen science program, training sessions for informal educators, and a project website. Collaborators include the National Geographic and three new major partners: Monterey Bay National Marine Sanctuary Program to expand citizen science programs around invasive species; Americans for Informed Democracy (AID), dedicated to organizing college campus educational events; The Ocean Project (TOP), a network of 600 organizations; plus the Arizona Sonora Desert Museum and eight other informal science institutions. Knight Williams Research Communications, and Public Knowledge and Cultural Logic will assess the impact of the series. The project will contribute to the field of informal science education by providing widely applicable communication lessons on ocean and water issues and a model methodology for creating science education media that is credible, informative, and relevant. The results of two unique adult learning case studies will be shared with the field through presentations at national meetings and workshops, and posted online.
DATE:
-
TEAM MEMBERS:
Mark ShelleyDavid EliscoTierney Thys
Quest, produced by KQED, is a multimedia initiative designed to raise the profile of STEM issues throughout the Northern California region and activate citizens to discuss and investigate them. Led by KQED, Quest is created and maintained by an active consortium of 16 participating informal science education organizations. Based on the successful Quest model, KQED will build on its prior collaborative work to develop regional partnerships with other public broadcasting stations and community-based organizations around the country, making possible a new and innovative partnership in science media production and informal science education. This grant will support a) a growing collaborative of science centers, museums, research institutes, and community-based organizations for editorial development, education outreach, and content creation; b) the production of at least 10 hours of television, weekly radio science news reports, and a dynamic online website that supports and extends the broadcast material; and c) educational resources and professional development workshops. STEM content will encompass research drawn from the physical sciences, life sciences, and earth sciences. Most of the stories will also incorporate content about the technology and engineering used to support scientific endeavors. The KQED Educational Network (EdNet) will administer the community and educational outreach initiatives, including creating viewer/listener guides, developing and delivering workshops, and providing information built around Quest media. Project collaborators include the Bay Institute, California Academy of Sciences, Chabot Space and Science Center, East Bay Regional Park District, Exploratorium, Girl Scouts, Lawrence Berkeley National Laboratory, Lawrence Hall of Science, Museum of Paleontology, Oakland Zoo, and The Tech Museum of Innovation. In expanding the model to regional hubs, Quest will also involve the Coalition for Public Understanding of Science (COPUS), the Encyclopedia of Life, and an array of peer public broadcasting organizations. This project offers a useful and exciting model for public television and radio stations nationally in building community collaborations that advance informal science education. The detailed and informed ways in which the team works with its community partners via multiple platforms are innovative. This proposal builds on prior work in Northern California to explore additional regional partnerships with other public broadcasting stations and community-based organizations, making possible a unique partnership in science media production and informal science education. This project extends reach by developing up to ten regional "hubs" across the country. Evaluation will be conducted by Rockman et al.
This proposal is from a coalition of cross disciplinary investigators at the Lawrence Hall of Science/Center for Ocean Sciences Education Excellence at the University of California, Berkeley. The investigators intend to create a communications network for ocean sciences in an informal setting to improve the communication of ocean science concepts. The network would foster relationships between ocean and climate scientists in institutions of higher education and build the capacity for educators to communicate with the public about science. The network is intended to impact visitors to informal science centers, docents, educators, and scientists. It would provide experiences with new scientific knowledge about the oceans and promote climate literacy for the landlocked states of the country where ocean sciences are not usual topics for educational programs. The network includes: 1. Long Beach Aquarium of the Pacific and University of Southern California; 2. Hatfield Marine Science Center and Oregon Sea Grant at Oregon State University; 3. Virginia Aquarium and Science Center and the Minorities in Marine Science Program, Hampton University; 4. Liberty Science Center and the Institute for Marine Coastal Sciences and Rutgers University; 5. Lawrence Hall of Science and Earth & Planetary Science and Integrative Biology, University of California, Berkeley; 6. Birch Aquarium at Scripps and Scripps Institution of Oceanography, University of California, San Diego; and 7. Purdue University. The goal of the project is to help a new generation of scientists and informal educators to better understand and more effectively communicate with the public the essential principles and fundamental concepts of Ocean Literacy, Climate Literacy, and Earth Science Literacy. The content is integral to understanding climate science and the science of climate change such as ocean circulation, causes of sea level rise, the influence of the ocean on weather and climate, the role of the ocean in Earth's energy, water and carbon systems, and the need for continued exploration of the ocean system.
DATE:
-
TEAM MEMBERS:
Catherine HalversenCraig StrangLynn Tran
The 2009 International Year of Astronomy coincides with the dimming and brightening of a variable star that can be seen with the naked eye. The American Association of Variable Star Observers and the Adler Planetarium and Astronomy Museum are organizing a new citizen program called STARS (Science Through Astronomical Research) that engages 8,000 amateur astronomers and non-astronomers in measuring brightness changes in the star Epsilon Aurigae, analyzing their observational data, and developing and testing their own explanatory hypotheses. The goals of the project are to increase public understanding of science by involving citizens in active research on an accessible, yet enigmatic astronomical phenomenon, and disseminate lessons learned to other citizen science programs. A mixed methods evaluation study is monitoring the implementation and impact of the program. The project should (1) increase the number of non-astronomers who take up astronomy as a hobby, (2) increase the number of amateur astronomers who participate in other citizen science-related astronomical activities (for example, sky surveys), and (3) increase the number of non-science oriented citizens who become more interested in science. A research study is investigating how a large-scale informal citizen science project changes public understanding of scientific inquiry.
The Astronomical Society of the Pacific, in collaboration with the Institute for Learning Innovation, will implement "Sharing the Universe." This research and implementation project is designed to include both a comprehensive, two-phased research component, as well as a large-scale national dissemination. The intended impacts are to improve the quality and effectiveness of informal science education activities provided by amateur astronomers; increase the frequency of public engagements in astronomy; and broaden the variety of events and diversity of the outreach to include underserved and underrepresented audiences. The project will create a community of practice using club leaders to improve astronomy clubs nationwide through research tools, training and outreach skills. Project deliverables include Phase I research which is designed to gain an understanding of how outreach-orientated clubs function and identify strategies that make successful clubs effective. Phase II will examine a core group of 20 clubs in detail to further understand the outreach culture while using interventions developed from the Phase I results such as a training DVD, Online Resource Library, Outreach Toolkit and a robust community of practice. The final deliverable will be the dissemination of proven strategies and best practices revealed by the research to 200 diverse astronomy clubs across the country. Strategic impact will be realized in increased outreach capacity among amateur astronomers and a strong model for astronomy clubs with proven best practices and resources. It is anticipated this project will reach more than 4,400 amateur astronomers and indirectly impact more than one million Americans in astronomy clubs in four years. Inverness Research will conduct the summative evaluation of the project.
The ScienceMakers: African Americans and Scientific Innovation is a three-year project designed to increase awareness of the contributions of African American scientists, raise awareness of STEM careers, and increase understanding of STEM concepts through the creation of education, media, and career resources. The project team is supplemented with an extensive advisory board of STEM education, museum, and community professionals, as well as representatives from partnering science centers. Project partners include the St. Louis Science Center, Liberty Science Center, New York Hall of Science, Pacific Science Center, Franklin Institute, COSI Columbus, Lawrence Hall of Science, SciWorks, Detroit Science Center, and MOSI Chicago. Additional collaborators include middle and high schools with high minority populations. Project deliverables include a fully accessible multi-media archive of video oral histories of 180 African American scientists and web resources and contests utilizing Web 2.0 and 3.0 applications such as social networking tools that foster engagement and build community around the ScienceMakers. Public programs for youth and adults at science museums, after-school programs, and community organizations highlight African American contributors, and encourage interest in science and science careers and the ScienceMakers DVD Toolkit expand the reach of this innovative project. Intended impacts for youth and adults consist of increased awareness of STEM concepts and career options, exposure to African American scientists, awareness of the contributions of minority scientists, and 21st century skills. Intended impacts on professional audiences include increased awareness and understanding of STEM careers and workforce diversity, 21st century skills, and STEM career options. The project evaluation, conducted by Knight-Williams Research Communications, utilizes a mixed-methods approach. The evaluation assesses the impact of the oral history archive, public programs, and other deliverables on public and professional audiences' knowledge, interest, and awareness of the contributions of African American scientists, STEM concepts, and STEM careers. The evaluation also includes an ethnography which examines factors that contribute to success in STEM careers by African-American scientists. The ScienceMakers significantly expands the world\'s largest searchable oral history archive and may have an enduring impact on research and practice in the field of informal science education. The project has the potential to enrich programs and exhibits, while raising awareness of the contributions of African-American scientists among informal science education professionals and the general public.