This is a review of Jrene Rahm's 2010 book "Science in the making at the margin: A multisited ethnography of learning and becoming in an afterschool program, a garden, and a math and science Upward Bound program." Rahm's research focuses on the nature of how science and meaning making are achieved through these programs.
Field notes from a study of a family support program for African immigrants reveal some of the challenges faced by these parents and their adolescent children.
English learners are a diverse group with diverse experiences and needs. While schools focus on teaching them English, afterschool programs can build on their strengths to address their social and emotional needs.
Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a Game Design Through Mentoring and Collaboration summer program for 16 high school students and 3 college student mentors who collaborated with a science subject matter expert. After four weeks, most students produced 2-D video games with themes based
DATE:
TEAM MEMBERS:
Neda KhaliliKimberly SheridanAsia WilliamsKevin ClarkMelanie Stegman
The study examines the resources related to science that African American young men learn and develop by playing a card game called Spades, a common cultural practice in African American communities that dates back to the Civil War Era. The qualitative study examines what the Spades players at a local high school consider when making decisions about what cards to play. A significant finding is that the players use, learn and develop resources such as the ability to make observations, draw inferences, and use empirical data to inform future actions and decisions. Such reasoning bears a
This study explored whether adding a haptic interface (that provides users with somatosensory information about virtual objects by force and tactile feedback) to a three-dimensional (3D) chemical model enhanced students' understanding of complex molecular interactions. Two modes of the model were compared in a between-groups pre- and posttest design. In both modes, users could move and rotate virtual 3D representations of the chemical structures of the two molecules, a protein and a small ligand molecule. In addition, in a haptic mode users could feel the interactions (repulsive and attractive
DATE:
TEAM MEMBERS:
Petter BivallShaaron AinsworthLena Tibell
It is presented some considerations related to the role of cinema to introduce and contextualize issues as the image of science and scientists and how science works. Cinema can be used as an important tool in science teacher training or education because it lets to establish connections between two relevant aspects in natural science classrooms: the emotional component that allows the audience to establish a relation with the characters of scientific stories (Arroio, 2010) and the historical-philosophical-sociological component which contributes to show a more real image of science in school
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE:
-
TEAM MEMBERS:
Southwestern CollegeDavid BrownDavid Hecht
This implementation study explores middle school, high school and community college student experiences in Globaloria, an educational pilot program of game design offered in schools within the U.S. state of West Virginia, supported by a non-profit organization based in New York City called the World Wide Workshop Foundation. This study reports on student engagement, meaning making and critique of the program, in their own words. The study's data source was a mid-program student feedback survey implemented in Pilot Year 2 (2008/2009) of the 5 year design-based research initiative, in which the
The article discusses the outcomes of the Mathematics Improvement That Ensures Excellence (MITEE), an after-school mathematics tutoring program in the U.S. which aims at improving the mathematics conceptual understanding and level of procedural skills of second and fifth graders and encouraging ninth graders to pursue teaching careers. It offers an overview of the inception of the program through the collaborative effort between an urban school district and a midwestern university, along with teacher education students and community volunteers, and describes the different participants and
This study was designed to examine the impact of participating in an after-school robotics competition on high school students' attitudes toward science. Specifically, this study used the Test of Science-Related Attitude to measure students' social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Results indicated that students who participated in a robotic competition had a more positive attitude toward science and science-related
This book reviews the available research on learning science through interaction with digital simulations and games. It considers the potential of digital games and simulations to contribute to learning science in schools, in informal out-of-school settings, and everyday life. The book also identifies the areas in which more research and research-based development is needed to fully capitalize on this potential.