Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
The Children’s Museum will collaborate with six Hartford Public Library branches, three Hartford Family Centers, and the Connecticut Children’s Medical Center to provide hands-on Science, Technology, Engineering, Arts, and Mathematics (STEAM) - based programs to over 1,000 local 3 to 14-year old children and their care givers. Program design and development will include planning for field trips to the museum. All participants will be given age-specific, supplemental STEAM materials to continue their learning activities at home, and families can attend more than one week of library programs, or more than three Saturdays of family center programs. The goal will be to help urban Hartford youths find new pathways toward responsible citizenry and fiscal stability.
This report shares the results of a year-long study of the impact of IMLS grants (1998-2003) though programs that served youth aged 9-19. Nearly 400 museum and library programs were surveyed about their goals, strategies, content, audience, and structure, as well as about their impact, effectiveness, and outcomes.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. The project will develop and research an integrated package of high-quality, widely accessible media and other outreach materials designed to engage middle school youth, educators, and libraries in learning about viruses in relation to COVID-19. There is an immediate need to provide youth with accurate, engaging, and accessible materials to help them understand the basic biology underlying the COVID-19 pandemic, including the routes of COVID-19 transmission and mechanisms to prevent its spread. This is particularly important for those without science backgrounds or interests so that the rumors, hearsay, and gossip circulating among youth can be replaced with research-based information. Since 2007, the project team and partners have focused on developing and studying new ways of educating youth and the public about biology, virology, and infectious disease. The project will develop a web-accessible package of customizable graphics, illustrated stories, and essays--all of which can be easily incorporated into free-choice and directed on-line learning as well standards-based lesson plans for Grades 6-8. These resources will be disseminated broadly and at no cost to youth and educators of all kinds, including schools, libraries, museums, and other established networks for formal and informal science education. The project web package will be linked to multiple websites that serve as important educational resources on science and virology for youth, the general public, and educators. A prominent university press will publish and promote the illustrated stories and support distribution of 7,000 free copies.
The project will conduct research examining how richly-illustrated science narratives impact youth understanding of and curiosity about science. The research will help develop the foundation for better understanding how to educate youth about COVID-19 (and future pandemics) while generating new knowledge about effective methods for public science outreach during a major unanticipated natural event. For formative evaluation, the project will use an innovative rapid response feedback method. Youth will be invited to provide timely, specific comments on the serialized stories through a curated portal. As new excerpts are related online, different questions will be posed to youth who are selected because of specific characteristics (e.g., low or high initial science interest). These data will guide story development in real time and provide a mechanism to gauge the story appeal, comprehensibility, and initial impacts. The project will address two research questions: (1) How effective are illustrated stories in having positive impacts among participants on COVID-19 knowledge, science identity, attitudes, and interest in science careers?; and (2) How do story lines and characters have differential impacts on virus knowledge, epidemiology, and youth attitudes towards science and science careers? To conduct this research, the project will conduct online surveys using adapted items from prior research conducted by the project team. Additional items will assess COVID-19 knowledge, attitudes, personal experiences with the virus, well-being, and exposure to public health messaging about the virus. Research findings will be shared widely to inform the field about new ways delivering science education content during the advent of rapidly evolving global and educational challenges.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Judy DiamondJulia McQuillanPatricia Wonch HillElizabeth VanWormer
The PEAR Institute: Partnerships in Education and Resilience at McLean Hospital and Harvard Medical School conducted a year-long study of the Tulsa Regional STEM Alliance (TRSA). Funded by the Overdeck Family Foundation, STEM Next Opportunity Fund, and the Charles and Lynn Schusterman Family Foundation, this study is the first of its kind among 68 national and international STEM Ecosystems.
DATE:
TEAM MEMBERS:
Kristin Lewis-WarnerPatricia AllenGil Noam
An in-depth case study of one of America’s first STEM Learning Ecosystems in Tulsa, Oklahoma, conducted by researchers at The PEAR Institute: Partnerships in Education and Resilience, finds that strong leadership, deep partnerships, and data-informed methods have led to the creation of diverse, high-quality, STEM-rich learning opportunities for Tulsa’s youth. Additionally, these efforts improved the capacity of STEM educators through high-quality professional development and supported youth pathways to STEM careers by increasing mentoring opportunities for STEM professionals.
These findings
DATE:
TEAM MEMBERS:
Kristin Lewis-WarnerPatricia AllenGil Noam
This CAISE report is designed to track and characterize sector growth, change and impact, important publications, hot topics/trends, new players, funding, and other related areas in Informal STEM Education (ISE) in 2017. The goal is to provide information and links for use by ISE professionals, science communicators, and interested stakeholders who want to discover new strategies and potential collaborators for project and proposal development. Designed as a slide presentation and divided into sectors, it can be used modularly or as a complete report. Each sector reports on research, events
The Museum of Science and Industry, Chicago (MSI) will develop museum-based education resources to engage high school age youth in the exploration of climate literacy and Earth systems science through its Teen ACES (Teen Advocates for Community and Environmental Sustainability) project. As the future leaders who will make decisions about the issues they face in their communities, youth participants will be positioned to act as advocates for establishing resilient communities in the Midwest. The project will utilize a variety of resources, including NOAA Science On a Sphere® (SOS) technology and datasets, Great Lakes and local climate assets from the Midwest Regional Climate Center and Illinois-Indiana Sea Grant, and existing local planning guides to develop museum-based youth programming. Teens will explore environmental hazards including severe weather events and temperature extremes, and consider the impact of the Great Lakes on regional climate. The Chicago Metropolitan Agency for Planning, Resilient Chicago, the Institute of Environmental Sustainability at Loyola University Chicago, and the South Metropolitan Higher Education Consortium will advise on the project to support the integration of municipal resiliency plans and their related adaptation and mitigation measures into the program. Teen participants will share their learning with the Chicago community through interactions with public visitors in the Museum, programs at Chicago Public Library branches, and MSI’s teen science program broadcast on Chicago’s public access TV station. Teen facilitated experiences will be tailored for SOS® experiences at MSI. The project will revise content for use in 100 after-school science clubs for students from diverse communities across the Chicago area. Further dissemination to three regional science center partners equipped with SOS® technology (Boonshoft Museum of Discovery in Dayton, Ohio; Science Central in Fort Wayne, Indiana; and Hawthorn Hollow in Kenosha, Wisconsin) will build a foundation of knowledge and resources to adapt materials to meet the needs of their communities and consider how their vulnerabilities and resiliency plans may differ from Chicago.
This report introduces a framework to support learning in library and museum makerspaces. The framework demonstrates how we can create the conditions for ambitious learning experiences to unfold within the making experience.
DATE:
TEAM MEMBERS:
Children's Museum of PittsburghInstitute of Museum and Library ServicesPeter Wardrip
Maker Corps is a program delivered by the Maker Education Initiative (Maker Ed) to increase organizational capacity to develop and deliver maker programing. Since its inception in 2013, the program has grown to support over 100 organizations by providing professional development, connections to a community of other maker educators and individualized support. Over time the program elements have changed in response to feedback from participants, collaboration with evaluators and shifts in focus for Maker Ed’s goals. In the spirit of maker education – tinkering, observing, responding, iterating –
Abstract: We aim to disrupt the multigenerational cycle of poverty in our rural indigenous (18% Native American and 82% Hispanic) community by training our successful college students to serve as role models in our schools. Poverty has led to low educational aspirations and expectations that plague our entire community. As such, its disruption requires a collective effort from our entire community. Our Collective unites two local public colleges, 3 school systems, 2 libraries, 1 museum, 1 national laboratory and four local organizations devoted to youth development. Together we will focus on raising aspirations and expectations in STEM (Science, Technology, Engineering and Mathematics) topics, for STEM deficiencies among 9th graders place them at risk of dropping out while STEM deficiencies among 11th and 12th graders preclude them from pursuing STEM majors in college and therefore from pursuing well paid STEM careers. We will accomplish this by training, placing, supporting, and assessing the impact of, an indigenous STEM mentor corps of successful undergraduate role models. By changing STEM aspirations and expectations while heightening their own sense of self-efficacy, we expect this corps to replenish itself and so permanently increase the flow of the state's indigenous populations into STEM majors and careers in line with NSF's mission to promote the progress of science while advancing the national health, prosperity and welfare.
Our broader goal is to focus the talents and energies of a diverse collective of community stakeholders on the empowerment of its local college population to address and solve a STEM disparity that bears directly on the community's well-being in a fashion that is generalizable to other marginalized communities. The scope of our project is defined by six tightly coupled new programs: three bringing indigenous STEM mentors to students, one training mentors, one training mentees to value and grow their network of mentors, and one training teachers to partner with us in STEM. The intellectual merit of our project lies not only in its assertion that authentic STEM mentors will exert an outsize influence in their communities while increasing their own sense of self-efficacy, but in the creation and careful application of instruments that assess the factors that determine teens' attitudes, career interests, and behaviors toward a STEM future; and mentors' sense of self development and progress through STEM programs. More precisely, evaluation of the programs has the potential to clarify two important questions about the role of college-age mentors in schools: (1) To what degree is the protege's academic performance and perceived scholastic competence mediated by the mentor's impact on (a) the quality of the protege's parental relationship and (b) the social capital of the allied classroom teacher; (2) To what degree does the quality of the student mentor's relationships with faculty and peers mediate the impact of her serving as mentor on her self-efficacy, academic performance, and leadership skills?