This guide offers an introduction to collaborations between museums and youth-serving community organizations. While this guide is designed specifically for museums and community organizations, much of the content contained in this document can be applied to all kinds and levels of partnerships. This guide includes an overview of why to collaborate, levels of partnerships, how to start a partnership, and a variety of resources to sustain and deepen your collaborative relationships. Sprinkled throughout this document is advice from experienced collaborators as well as examples of different ways
In this article, we invite you to expand your vision of what it means to work at the intersections of formal and informal science and literacy education by describing how educators have collaborated to create programs that blend science and literacy in schools, in museums, and across these two spaces. In 2012, K–12 teachers from the National Writing Project (NWP) began working with the Association of Science-Technology Centers (ASTC) and science museum educators in the National Science Foundation–funded Intersections project, which is being evaluated by Inverness Research. NWP is a network
The connections among neuroscience, educational research, and teaching practice have historically been tenuous (Cameron and Chudler 2003; Devonshire and Dommett 2010). This is particularly true in public schools, where so many issues are competing for attention—state testing, school politics, financial constraints, lack of time, and demands from parents and the surrounding community. Teachers and administrators often struggle to make use of advances in educational research to impact teaching and learning (Hardiman and Denckla 2009; Devonshire and Dommett 2010). At the Franklin Institute, we
The Exploratorium explainer program is not only important to the young people involved, but is an integral part of the museum culture. This initiative that started to help the youth of our community has blossomed into a program that has been very helpful to the science centre. In fact, the institution would not be complete without the fresh energy of the explainers. They help the Exploratorium to continue to give the real pear to its public.
This article seeks to reflect on mediation in museums based on experiences that occurred in the “Learning in order to Teach” Project. In this case, the mediation acquires specific characteristics because it deals with young deaf people learning art-related contents in order to teach other youth in their first language. The most interesting aspect of this encounter between museum and deaf culture is a mutual, immediate and highly visible influence. While museum-goers and professionals understand that the “gestures” used by the deaf are not random (rather, on the contrary, they make up a
DATE:
TEAM MEMBERS:
Daina LeytonCibele LucenaJoana Zatz Mussi
Peer training provides Explainers with the knowledge, skills and confidence to facilitate high quality interactions with visitors. These are skills that carry into their academic, personal and professional lives. Explainers report better grades in school, improved communication skills and better understanding of diverse learning styles. By devoting this high level of time and attention to this valuable resource, we can truly see the significant influence the science center can have on this most valuable, and often underserved, museum audience.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Teen Science cafes are a way for teens to explore the big advances in science and technology affecting their lives. Teens and local STEM experts engage in lively conversations and activities to explore a topic.
If one of aims of science today is to respond to the real needs of society, it must find a new way to communicate with people and to be acquainted with their opinions and knowledge. Many science museums in Europe are adopting new ways to actively engage the public in the debate on topical scientific issues. The Museum of Science and Technology "Leonardo da Vinci" in Milan (partner of the SEDEC project) has thus experimented some formats for dialogue with teachers and with the public in general. Our experience shows that museums can be places where science and the public on the one hand and
This paper describes Synergies, an on-going longitudinal study and design effort, being conducted in a diverse, under-resourced community in Portland, Oregon, with the goal of measurably improving STEM learning, interest and participation by early adolescents, both in school and out of school. Authors examine how the work of this particular research-practice partnership is attempting to accommodate the six principles outlined in this issue: (1) more accurately reflect learning as a lifelong process occurring across settings, situations and time frames; (2) consider what STEM content is worth
The dramatic decline in youth interest in science, technology, engineering and mathematics (STEM) during adolescence, both in the USA and internationally, has been a phenomenon of societal concern for several decades. The Synergies project was launched to help deal with this issue. In this paper, we report findings from the first two years of our longitudinal survey research. We sought to understand the nature of the STEM-related interests of 10-/11-year-old youth living in a single urban community and the factors that seem to influence whether these various dimensions of interest increase
Scientific literacy is an important educational and societal goal. Measuring scientific literacy, however, has been problematic because there is no consensus regarding the meaning of scientific literacy. Most definitions focus on the content and processes of major science disciplines, ignoring social factors and citizens’ needs. The authors developed a definition of scientific literacy for the California 4-H Program from the citizen’s perspective, concentrating on real-world science-related situations. The definition includes four anchor points: science content; scientific reasoning skills
The following QuarkNet evaluation data were collected between September 2011 and September 2012. Questions from an Evaluation Matrix developed by QuarkNet program director and NSF program director are addressed, preceded by a summary of data collection and analysis. This is the fourth year using the Matrix. Collection strategies were updated based on findings from last year and included in this year’s evaluation
section. This is the last annual report under the 2008-2012 grant from The National Science Foundation (NSF) and the Department of Energy (DOE).