In stories about democratic society that take place in a democratically structured environment, Youth Radio walks the fine line between professional journalism and youth development in ways that question the automatic equation between "youth voice" and freedom of expression.
Based on lessons learned from more than a decade of OST STEM programming for urban youth, Project Exploration proposes an alternative to the pipeline: Youth-Science Pathways. Youth-Science Pathways enable program providers to move beyond “pipeline” priorities to design for outcomes in which STEM learning experiences support young people’s social and emotional development. Changing the metaphor from a pipeline to pathway transforms the purpose of the educational effort: rather than an endeavor in which students’ experiences support STEM academic and workforce outcomes, STEM experiences are put
This article describes Youth as Resources, a nationwide initiative involves youth and adults as equal partners in projects that improve community life. Some examples of the projects include the Rural Renewable Energy Alliance, which engages teenagers to install solar heating in low income homes, and the Haydenville Preservation Committee, which implemented neighborhood cleanup and landscaping projects in rural Ohio.
Community technology centers (CTCs) help bridge the digital divide for immigrant youth in disadvantaged neighborhoods. A study of six CTCs in California shows that these centers also promote positive youth development for young people who are challenged to straddle two cultures.
DATE:
TEAM MEMBERS:
Rebecca LondonManuel PastorRachel Rosner
In recent years, afterschool programs have come to be envisioned as sites for addressing the failure of urban schools to provide adolescents with the requisite skills and knowledge to participate in a rapidly shifting social, political, and economic landscape. The purpose and nature of such educational endeavors has taken many varied forms, as a growing number of stakeholders become invested in shaping the direction and implementation of afterschool programming. However, youth, as the recipients of these programs, have rarely been looked to as sources of experiential knowledge about the
DATE:
TEAM MEMBERS:
Katherine SchultzEdward BrockenbroughJaskiran Dhillon
In 2009, the North Carolina Virtual Public Schools worked with researchers at the William and Ida Friday Institute to produce and evaluate the use of game creation by secondary students as a means for learning content related to career awareness in Science, Technology, Engineering and Mathematics (STEM) disciplines, with particular emphasis in computer science areas. The study required the development of various forms of multimedia that were inclusive of content and activities delivered in a distance environment via the Internet. The team worked with a game art and design graduate class to
Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a Game Design Through Mentoring and Collaboration summer program for 16 high school students and 3 college student mentors who collaborated with a science subject matter expert. After four weeks, most students produced 2-D video games with themes based
DATE:
TEAM MEMBERS:
Neda KhaliliKimberly SheridanAsia WilliamsKevin ClarkMelanie Stegman
The article focuses on an educational program called Game Design Through Mentoring and Collaboration. The program is a partnership between McKinley Tech and George Mason University (GMU) in Fairfax, Virginia. Through this program the teachers ensure students understand the pathways needed for participation in the science, technology, engineering, and math (STEM) enterprise. Kevin Clark, is the principal investigator of the program.
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
Many adolescents develop ideas about and attitudes toward engineering through their exposure to out-of-school representations of science and technology. Yet few studies have investigated the nature of these representations and found ways to use them in formal engineering learning. This article explores media representations of science and technology that today's adolescents are familiar with. It analyzes how the embedded representations compare with those found in academic engineering and examines how these representations influence students' knowledge of and dispositions toward engineering
The article discusses how STEM (Science, Technology, Engineering, and Mathematics) education resources can be implemented in to public libraries and services for teenagers. The author notes that with an increased importance placed on STEM subjects, it is important for librarians to consider resources and programs for students beyond what they typically offer. The article lists suggested ways librarians can integrate STEM into public library work, including introducing STEM resources to students when visiting schools, promoting STEM programs to parents and educators, and creating STEM booklists