The Learning and Youth Research and Evaluation Center (LYREC) is a collaboration of the Exploratorium, Harvard University, Kings College London, SRI International and UC Santa Cruz. LYREC provides technical assistance to NSF AYS projects, collects and synthesizes their impact data, and oversees dissemination of progress and results. This center builds on the Center for Informal Learning in Schools (CILS) that has developed a theoretical approach that takes into account the particular strengths and affordances of both Out of School Teaching (OST) and school environments. This foundation will permit strengthening the potential of the NSF AYS projects to develop strong local models that can generate valid and reliable data that can guide future investment, design and research aimed at creating coherence across OST and school settings. The overarching questions for the work are: 1. How can OST programs support K-8 engagement and learning in science, and in particular how can they contribute to student engagement with K-8 school science and beyond? 2. What is the range of science learning outcomes OST programs can promote, particularly when in collaboration with schools, IHE's, businesses, and other community partners? 3. How can classroom teachers and schools build on children's OST experiences to strengthen children's participation and achievement in K-12 school science Additionally, the data analysis will reveal: 1. How OST programs may be positioned to support, in particular, high-poverty, female and/or minority children traditionally excluded from STEM academic and career paths; and 2. The structural/organizational challenges and constraints that exist to complicate or confound efforts to provide OST experiences that support school science engagement, and conversely, the new possibilities which are created by collaboration across organizational fields. Data will be gathered from surveys, interviews, focus groups, evaluation reports, and classroom and school data.
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
resourceprojectProfessional Development, Conferences, and Networks
The Oregon Museum of Science and Industry (OMSI) will create a 5,000 sq ft traveling exhibition designed to engage families with children ages 10-14 with concepts of algebra. Access Algebra will increase visitor awareness of the role of algebra in everyday life and help them to develop algebraic thinking skills. This exhibition will travel to 21 science centers, reaching some 3.5 million visitors on its national tour. It will be accompanied by an Educator's Guide, Family Guide, and complementary web activities. Access Algebra incorporates testing and implementation of an innovative model for professional development for museum exhibit, program, and interpretive staff. It links the exhibition tour to training at each venue designed to increase knowledge of algebra concepts and to develop facilitation skills in family math learning. The package includes workshops, training DVD, printed guide, Math Toolkit, and website support. Project partners include TERC, Oregon State University College of Education (OSU), and Blazer Boys & Girls Club (BBGC). The BBGC members will participate in exhibit development over an extended (12-week) period, helping to create an exhibition that will engage a target audience of underserved low-income youth. The strategic impact of Access Algebra derives from the development and testing of effective strategies for engaging audiences in exhibit-based informal math learning, along with increasing the capacity of the field for facilitating these kinds of experiences through a new model for professional development.
A Youth-Directed Cafe Scientifique targets culturally, ethnically, and economically diverse youth ages 11-18 with a web-based program designed to engage students in active discourse on current STEM topics. Building on the adult program of the same name, this youth-centered project also provides opportunities for individual and group activities. Project partners include Los Alamos National Laboratory, the Bradbury Science Museum, Sandia National Laboratory, Los Alamos Women in Science, and the University of New Mexico, which will serve as a source of scientists to act as speakers and mentors. Northern New Mexico Collefe, Santa Fe Community College, University of New Mexico, and theNew Mexico Museum of Natural History and Science, as well as area high schools will host discussions and focus group meetings. Recruitment of youth participants will be carried out by New Mexico MESA as well as four local high schools. Project deliverables include a robust model for engaging youth in an active online community and Youth Leadership Teams (YLT). YLT's select topics, recruit members, and facilitate Cafe discussions and blogs. Cafe meetings enable youth to explore a topic of their choice in an online session led by a youth host in conjunction with a guest speaker. The follow-up sessions encourage more in-depth exlopration of the topic via interviews, articles, community meetings, and museum exhibits created in collaboration with the Bradbury Museum. The Cafe website will highlight youth produced podcasts, essays on science topics, and a blog. Strategic impact resulting from this project includes the development of a creattive model that effectively engages youth in STEM discourse while meeting the cultural and intellectual needs. It is anticapated that this project will serve over 5,700 youth in three years.
Building Demand for Math Literacy is a comprehensive project designed to increase arithmetic and algebraic mathematical competency among underserved youth, as well as high school and college students trained as Math Literacy Workers. This project builds on the success of the nationally renowned Algebra Project that is designed to foster mathematics achievement among inner city youth. Math Literacy Workers will deliver after school activities to African-American and Hispanic youth in grades 3-6. In addition to offering weekly math literacy workshops, Math Literacy Workers will also develop and implement Community Events for Mathematics Literacy and activities for families in the following cities: Boston, MA; Chicago, IL; Jackson, MS; Miami, FL; Yuma, AZ; New Orleans, LA; San Francisco, CA and Newark, DE. The strategic impact will be demonstrated in the knowledge gained about the impact of diverse learning environments on mathematics literacy, effective strategies for family support of math learning, and the impact of culturally relevant software. Collaborators include the Algebra Project, the TIZ Media Foundation, and the Illinois Institute of Technology, as well as a host of community-based and educational partners. The project deliverables consist of a corps of trained Math Literacy Workers, workshops for youth, training materials and multimedia learning modules. It is anticipated this project will impact over 4,000 youth in grades 3-6, 700 high school and college students, and almost 4,000 family and community participants.
Radio Lab will produce 20 hour-long interdisciplinary science programs and 30 shorter features to be aired on NPR news magazine programs on a wide range of core STEM topics exploring how research is done as well as what the scientific results mean to the listener. The programs are co-hosted by Robert Krulwich, science reporter for NPR, and Jared Abumrad, WNYC radio producer and music composer. The programs are using a new, unorthodox format with music, live sounds and conversations between the hosts designed to appeal to young adult listeners who previously thought they did not like science. Each episode is crafted around a scientific finding and aims to connect the scientific inquiry to philosophical and universal implications. Program topics will include biology and neuroscience as well as physics, genetics, chemistry, math and engineering. The program carriage goal is to have the hour-long programs airing on 100 stations reaching three to four million listeners by the end of the project. The shorter segments will be distributed by NPR in its regular news magazine programs. Programs will also be podcast on NPR and WNYC's web sites, as well as through iTunes. The project will also train NPR science reporters on this new approach to science news content.
DATE:
-
TEAM MEMBERS:
Ellen HorneJad AbumradRobert KrulwichBarbara Flagg
WGBH Educational Foundation is requesting funds to produce the third and fourth seasons of "NOVA scienceNOW," a multimedia project addressing a wide array of science, technology, engineering and mathematics subjects via multiple platforms including national PBS broadcast, the PBS Web site and innovative outreach initiatives. Project goals are to help the general public understand the value and importance of scientific ressearch and to encourage an interest in STEM careers among younger viewers. INNOVATION/STRAGEGIC IMPACT: The series provides a significant opportunity to develop a new format for science journalism building on brand recognition but potentially reaching a broader and more diverse national audience. The new host will be Dr. Neil deCgrasse Tyson, an accomplished astrophysicist and charismatic science communicator whose partipation will help the series reach out to a broader demographic. NOVA is planning a new scheduling configuration for these future seasons to maximize audience for the six new programs per year, i.e. the programs iwll run consecutively in the NOVA slot during June and July. COLLABORATION: NOVA has developed a new consortium of PBS stations to advise on the series and to contribute editorially to the programs. This will give the program greater geographic coverage and will provide local contacts with researchers at major universities and institutions connected to these stations. The project will also partner with the American Library Association and Sigma Xi and the Astronomical Society of the Pacific in the outreach effort. Multimedia Research, Inc. and Goodman Research Group will conduct formative and summative evaluations, respectively.
After-School Math PLUS (ASM+) uses the rapidly growing field of informal education as a venue to develop positive attitudes, build conceptual knowledge, and sharpen skills in mathematics for underserved youth in grades 3-8. "ASM+" brings families and children together in the pursuit of mathematics education and future career interests and directly addresses the NSF-ISE's four areas of special interests: (1) builds capacity with and among informal science education institutions; (2) encourages collaborations within communities; (3) increases the participation of underrepresented groups; and (4) models an effective after-school program. " ASM+" is being developed in collaboration with the New York Hall of Science and the St. Louis Science Center with support from after-school centers in their communities. "ASM+" incorporates the best practices of existing programs, while adding its own innovative elements that have proven successful in the NSF-funded "After-School Science Plus" (HRD #9632241). "ASM+" is aimed at underserved youth and their families, as well as after-school group leaders and teenage museum explainers who will benefit from training and participation in the project. It has facilitated the creation of alliances between museums, after-school centers, schools and the community.
Mixing in Math is a multi-dimensional, three-year project that seeks to build the capacity of after-school programs to provide meaningful and engaging math activities for youth. Program collaborators including project leaders from TERC and after-school program leaders will reach approximately 40,000 children through at least 350 sites and approximately 9,000 staff and volunteers. Drawing on the unique features of the after-school environment, the project design includes the following elements: development of materials appropriate to the setting; staff development and support; institutionalization and dissemination of materials throughout an established network and evaluation research to further knowledge about informal math and after-school programming. Project goals are to: provide free math materials to all participating after-school staff; produce a significant increase in informal math training for the after-school workforce; strengthen the role of informal math in after-school settings; and conduct and disseminate research on the project in terms of its impact on after-school programming, informal math education and the math "achievement gap." "Mixing in Math" national partners will facilitate further reach of the project. The National Institute of Out of School Time (NIOST) in addition to posting materials on their website, will incorporate project activities into their staff development programs. Ceridian, a work-life benefits provider, will distribute project materials to workplace school-ages childcare programs.
Understanding the Science Connected to Technology (USCT) targets information technology (IT) experiences in a comprehensive training program and professional support system for students and teachers in science, technology, engineering and mathematics (STEM). Participants have opportunities to assume leadership roles as citizen volunteers within the context of science and technology in an international watershed basin. Training includes collection, analysis, interpretation and dissemination of scientific data. BROADER IMPACTS: Building on a student volunteer monitoring program called River Watch, the USCT project enables student scientists to conduct surface water quality monitoring activities, analyze data and disseminate results to enhance local decision-making capacity. The project incorporates state and national education standards and has the potential to reach 173 school jurisdictions and 270,000 students. USCT will directly impact 81 teachers, 758 students and 18 citizen volunteers. The USCT project provides direct scientist mentor linkages for each participating school. This linkage provides a lasting process for life-long learning and an understanding of how IT and STEM subject matter is applied by resource professionals. Broader impacts include accredited coursework for teachers and students, specialized training congruent with the "No Child Left Behind Act of 2001," and building partnerships with Native American schools. INTELLECTUAL MERIT: The USCT project is designed to refocus thinking from static content inside a textbook to a process of learning that includes IT and STEM content. The USCT engages students (the next generation of decision makers) in discovery of science and technology and expands education beyond current paradigms and political jurisdictions.
The St. Louis Science Center, in collaboration with the City College of New York and the Science Museum of Minnesota, will combine their considerable expertise with youth programs to create new opportunities for after-school STEM learning. Teens, ages 14-17, currently participating in the "Youth Exploring Science" program at the St. Louis Science Center and the Youth Science Center at the Science Museum of Minnesota will receive intensive training to prepare them to assume the role of lead designers of Learning Places that will be created in nine-after school programs in St. Louis and St. Paul. "Learning Places" are educational environments supported by hands-on activities and innovative strategies that integrate science, mathematics and technology into after-school programs. In the final year of the grant the project will be disseminated to five museums across the US including the Pacific Science Center (Seattle, WA), Headwaters Science Center (Bemidji, MN), Explora (Albuquerque, NM), and Sciencenter (Ithica, NY). Youth program staff, and staff and administrators in after-school programs and partnering museums will also benefit from training and professional development. Deliverables include 27 "Learning Places," a teen training program, a Resource Guide for implementation and research contributions to the field.
The Developmental Studies Center (DSC) will implement "Home, School and Community: AfterSchool Math for Grades 3-5," a program that targets at-risk and low income children in afterschool programs. AfterSchool Math trains youth workers to help students in grades 3-5 better understand measurement and geometry concepts, building on the success of the NSF-funded Home, School and Community mathematics program for grades K-2 (ESI #97-05421). The project develops, field-tests and evaluates thirty math games and ten story guides, which support the social and mathematical development of children, while emphasizing cooperative learning. The content for all materials will be aligned with national standards in mathematics. A 12-hour professional development workshop for youth workers and an 18-hour workshop for facilitators or youth worker leaders are also planned. Two training videos and a facilitator manual will be produced to support this aspect of the project. Field testing will occur in Kansas, Louisiana and Missouri. This proposal has been augmented to include a special emphasis on rural communities which doubles the number of field test sites from 50 to 100. A Rural Outreach Specialist will conduct focus group meetings to determine needs unique to rural programs and lead the field testing in these communities. It is anticipated that over 3,200 youth workers will be trained and a national cadre of more than 300 youth worker leaders will be created.