Skip to main content

Community Repository Search Results

resource research Media and Technology
This CAISE report is designed to track and characterize sector growth, change and impact, important publications, hot topics/trends, new players, funding, and other related areas in Informal STEM Education (ISE) in 2017. The goal is to provide information and links for use by ISE professionals, science communicators, and interested stakeholders who want to discover new strategies and potential collaborators for project and proposal development. Designed as a slide presentation and divided into sectors, it can be used modularly or as a complete report. Each sector reports on research, events
DATE:
resource research Public Programs
We explore the understudied role of program staff in an out-of-school time (OST) program at a large science museum, which may be especially relevant for supporting underrepresented minority (URM) youth’s interest in science, technology, engineering, or math (STEM) careers. Using a sequential explanatory mixed-method design, we surveyed 167 program alumni on their science attitudes, career interests, and memories about how the program compared to experiences at home, school, and with friends. We followed that with 49 interviews with alumni. Findings show that, while in the program, alumni who
DATE:
TEAM MEMBERS: Aaron Price Faith Kares Gloria Segovia Aerika Brittian Loyd
resource evaluation Public Programs
This study explored the effect of depth of learning (as measured in hours) on creativity, curiosity, persistence and self-efficacy. We engaged ~900 parents and 900 students across 21 sites in Washington, Chicago, Los Angeles, New York, Alabama, Virginia and the United Arab Emirates, in 5-week (10-hr) Curiosity Machine programs. Iridescent trained partners to implement the programs. Thus, this analysis was also trying to establish a baseline to measure any loss in impact from scaling our programs and moving to a “train-the-trainer” model. We analyzed 769 surveys out of which 126 were paired. On
DATE:
TEAM MEMBERS: Iridescent
resource research Park, Outdoor, and Garden Programs
There is growing concern that opportunities for outdoor learning by school students in England have decreased substantially in recent years. In response to this, and recent Government calls for ‘schools to make better use of the outdoor classroom as a context for teaching and learning’, the Field Studies Council (FSC) and several partner organisations commissioned the National Foundation for Educational Research (NFER) to undertake a review of research on outdoor learning. This document summarises the key findings of this review, which critically examined 150 pieces of research on outdoor
DATE:
TEAM MEMBERS: Mark Rickinson Justin Dillon Kelly Teamey Marian Morris Mee Young Choi Dawn Sanders Pauline Benefield
resource project Websites, Mobile Apps, and Online Media
The ACCEYSS (Association of Collaborative Communities Equipping Youth for STEM Success) Network and Model project, an NSF INCLUDES Design and Development Launch Pilot, at Texas State University is forming a university-community partnership between interdisciplinary researchers (ACCEYSS research team), faith leaders and other community partners to implement an innovative model that prepares underrepresented and underserved youth to pursue undergraduate science, technology, engineering, and mathematics (STEM) degrees. The inaugural ACCEYSS network will include Texas State University, San Marcos Consolidated Independent School District, San Marcos Youth Service Bureau, City of San Marcos-Office of the City Manager, Hays County Youth Initiative, the Calaboose African American History Museum, and several local faith-based organizations. Many historic advancements have been made through the efforts and activities of faith and community leaders uniquely poised to motivate and galvanize community-based action. A collaboration among these academic institutions, social/cultural organizations, and faith partners to work with the families and youth of underrepresented/underserved populations will be an essential asset for generating new perspectives and ideas for improving STEM academic and career outcomes related to broadening participation in the scientific enterprise.

During this launch pilot, the ACCEYSS research team and network will collaborate to design and develop the ACCEYSS model as a culturally-relevant, blended-learning strategy that integrates online and in-person STEM enrichment activities (e.g., summer institute, afterschool clubs) that are aligned with the Science and Engineering Practices and Disciplinary Core Ideas Dimensions of the K-12 Next Generation Science Education Standards. The collective impact framework will be used to build diverse capacity, leverage asset-based community development, and sustain mutually reinforcing non-exclusive policies and practices for STEM diversity and inclusion. Additionally, in this launch pilot, a multifaceted design-based research approach will be utilized to support middle and high school students' interest in and pursuit of STEM studies.
DATE: -
TEAM MEMBERS: Shetay Ashford Kristy Daniel (Halverson) Dana Garcia
resource project K-12 Programs
This project, an NSF INCLUDES Design and Development Launch Pilot, managed by the University of Nevada, Reno, addresses the grand challenge of increasing underrepresentation regionally in the advanced manufacturing sector. Using the state's Learn and Earn Program Advanced Career Pathway (LEAP) as the foundation, science, technology, engineering and mathematics (STEM) activities will support and prepare Hispanic students for the region's workforce in advanced manufacturing which includes partnerships with Truckee Meadows Community College (TMCC), the state's Governor's Office of Economic Development, Charles River Laboratories, Nevada Established Program to Stimulate Competitive Research (Nevada EPSCoR) and the K-12 community.

The expected outcomes from the project will inform the feasibility, expandability and transferability of the LEAP framework in diversifying the state's workforce locally and the STEM workforce nationally. Formative and summative evaluation will be conducted with a well-matched comparison group. Dissemination of project results will be disseminated through the Association for Public Land-Grant Universities (APLU), STEM conferences and scholarly journals.
DATE: -
TEAM MEMBERS: David Shintani Julie Ellsworth Karsten Heise Robert Stachlewitz Regina Tempel
resource project K-12 Programs
Arizona State University's Ira A. Fulton Schools of Engineering with the Maricopa County Community Colleges District and K-12 school districts along with industry partners, Honeywell, Intel, and Texas Instruments, and the Helios Education Foundation will implement an NSF Design and Development Launch Pilot to address the broadening participation objectives of enhancing entry and persistence of underrepresented groups in engineering. This alliance will identify and develop effective mechanisms to impact entry and persistence in engineering at scale and to expand the effort for the region, serving as a model for Arizona and other universities nationally. Diversity is often seen as a valuable commodity for fostering innovation and creativity in engineering, and extant theoretical and empirical literature provides evidence of the importance a diversified engineering workforce can have to spark scientific and technological innovation to solve complex problems. Nationally, there is a consistent shortage of available diverse engineers and scientists, which is believed to compromise the country's ability to sustain its leadership position as a global force. This project will create engineering pathways for underrepresented groups and identify and develop effective mechanisms that impact these students' entry and persistence in engineering.

A total of 500 high school students, 100 2-year college students, and 200 four-year college students will participate in the project. The research measures will focus on students' academic/career awareness and interest in engineering and the degree to which students develop a strong identity and affinity for engineering. It is expected that the alliance affiliates will develop into adaptive systems that respond to needs of first-generation students at various pathway junctures. This project has the potential to transform educational experiences and support systems for first-generation students.
DATE: -
TEAM MEMBERS: Kyle Squires Roberta Anslow-Hammond Maria Reyes James Collofello Tirupalavanam Ganesh
resource project Summer and Extended Camps
The University of Texas at Austin's Texas Advanced Computing Center, Chaminade University of Honolulu (CUH), and the Georgia Institute of Technology will lead this NSF INCLUDES Design and Development Launch Pilot (DDLP) to establish a model for data science preparation of Native Hawaiian and Pacific Islander (NHPI) students at the high school and undergraduate levels. The project is premised on the promise of NHPI communities gaining access to, and the ability to work with, large data sets to tackle emerging problems in the Pacific. Such agency over "big data" sets that are relevant to Pacific issues, and contemporary skills in data science, analytics and visualization have the potential to be transformative for community improvement efforts. The effort has the potential to advance knowledge, instructional pedagogy and practices to improve NHPI high school and undergraduate students performance in and attraction to STEM education and careers.

The project team will work to: 1) Increase interest and proficiency in data science and visualization among NHPI high school and undergraduate students through a summer immersion experience that bridges computation and culture; 2) Build data science capacity at an NHPI serving undergraduate institution (CUH) through creation of a certificate program; and 3) Develop and expand partnerships with other organizations with related goals working with NHPI populations. The month-long summer training for 20 NHPI college students, and five NHPI high school students, takes place at CUH and focuses on data science, visualization, and virtual reality, including working on problem sets that require data science approaches and incorporate geographically, socially- and culturally-relevant research themes.
DATE: -
TEAM MEMBERS: Kelly Gaither Rosalia Gomez
resource project Professional Development, Conferences, and Networks
Project SYSTEMIC (A Systems Thinking Approach to STEM Ecosystem Development in Chicago) will apply systems thinking to a community-level STEM ecosystem development effort in one of Chicago's largest and most distressed neighborhoods. The project aims to broaden participation of African American and low-income Chicago Public School students (preK-12) in STEM learning opportunities. The proposed model of collaborative change for this project builds on the work of two coordinated collective impact initiatives--the Chicago STEM Pathways Cooperative and Austin Coming Together, a network of local organizations committed to improving educational and economic outcomes for the community. A key feature of this project is that it adds innovative, interactive, visual problem structuring and solving strategies to highlight and uncover the systemic interdependencies that contribute to the BP challenge for African American youth. The project will convene a series of workshops to engage community stakeholders in the mapping of the STEM ecosystem. A broad and representative cross-section of community stakeholders will design and develop evidence-based STEM ecosystem organizing and implementation strategies. Key outcomes anticipated from this project are the development of a shared understanding, agenda, activities, and commitment to collectively address the underlying challenges of STEM access and participation for African American youth. The goal of this community-driven project is to develop a viable system model that elevates neighborhood voices, historically excluded from the problem-solving table and decision-making processes, to leverage existing assets, build local capacity, increase messaging and awareness of the value of STEM, identify needed new programs, and develop coordination/resource sharing mechanisms across partners to support implementation. The evaluation of this project will be grounded in systems thinking and culturally-responsive approaches that seek to understand the diverse perspectives of stakeholders while measuring progress toward project goals. Evaluation data will be used to assess the problem structuring process, to evaluate the organizational strategy designed to address the structured problem, and to support adaptive learning among stakeholders.
DATE: -
TEAM MEMBERS: Natasha Smith-Walker Elizabeth Lehman
resource project Professional Development, Conferences, and Networks
The University of Maine will address the grand challenge of increasing Native American participation in the science,technology, engineering and mathematics (STEM) enterprise in an NSF INCLUDES Design and Development Launch Pilot project addressing culturally relevant pedagogy, incorporating Community Elders, Cultural Knowledge Keepers, and mainstream secondary and higher education institutions in the development of STEM pedagogy that can be replicated to other underrepresented and underserved populations. Partners in the effort include the Wabanaki Youth in Science program (WaYS)(a non-profit organization), Salish Kootenai College (a Tribal College), Massachusetts Institute of Technology (a research university), the National Indian Education Association (a non-profit membership organization) and the current NSF INCLUDES Design and Development Launch Pilot project at the University of Maine (the Stormwater Research Management Team (SMART)). This NSF INCLUDES partnership provides students with evidence-based STEM activities involving culturally relevant internships, mentoring, STEM professional development activities and other support. Non-native students will reciprocally participate in Native American learning environments.

The foundation for the project's activities is based on the WaYS program in science education that incorporates Traditional Ecological Knowledge (TEK). The goals of the project are to: 1) create and integrate curriculum that embraces TEK and western science as equal partners; 2)develop and implement protocols to incorporate a continued mentorship program for WaYS and STREAM engineering students; 3)develop a framework to bridge the gap between high school and college; and 4) foster collaboration among Community Elders, Cultural Knowledge Keepers and University of Maine faculty in a model that could be transferred to other communities. Internal and external evaluation activities will add to the scholarly literature on educating Native Americans and non-native students in STEM disciplines. Dissemination of project results will include published peer-reviewed journal articles on newly developed pedagogy and conference presentations at the American Indian Science and Engineering (AISES) national conference, the National Diversity in STEM Conference, National Science Teachers Association, AAAS, ASEE and the National NSF INCLUDES Network.
DATE: -
TEAM MEMBERS: Darren Ranco John Daigle Mindy Crandall Shaleen Jain
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Games, Simulations, and Interactives
EMERGE in STEM (Education for Minorities to Effectively Raise Graduation and Employment in STEM) is a NSF INCLUDES Design and Development Launch Pilot. This project addresses the broadening participation challenge of increasing participation of women, the at-risk minority population, and the deaf in the STEM workforce. The project incorporates in and out-of-school career awareness activities for grades 4-12 in a high poverty community in Guilford County, North Carolina. EMERGE in STEM brings together a constellation of existing community partners from all three sectors (public, private, government) to leverage and expand mutually reinforcing STEM career awareness and workforce development activities in new ways by using a collective impact approach.

This project builds on a local network to infuse career exposure elements into the existing mutually reinforcing STEM activities and interventions in the community. A STEM education and career exposure software, Learning Blade, will be used to reach approximately 15,000 students. A shared measurement system and assessment process will contribute to the evaluation of the effectiveness of the collective impact strategies, the implementation of mutually reinforcing activities across the partnership and the extent to which project efforts attract students to consider STEM careers.
DATE: -
TEAM MEMBERS: Gregory Monty Margaret Kanipes Malcolm Schug Steven Jiang