Skip to main content

Community Repository Search Results

resource project Exhibitions
The Maryland Science Center (MSC), in collaboration with Johns Hopkins University (JHU), the University of Maryland, Baltimore (UMB), and Morgan State University (MSU), has sought the support of the National Institutes of Health SEPA (Science Education Partnership Award) Program to develop "Cellular Universe: The Promise of Stem Cells," a unique exhibition and update center with related programs that highlight the most current science in cell biology and stem cell research. Visitor surveys have shown that science museum visitors are very interested in learning about stem cell research, but know little about the science of stem cells or cell biology, which form the basis of stem cell research. The goal of this project is to help visitors learn about advances in cell biology and stem cells so that they will make informed health-related decisions, explore new career options, and better understand the role of basic and clinical research in health advances that affect people's lives. Topics to be covered include the basic biology of cells, the role of stem cells in human development, current stem cell research and the clinical research process. This exhibition will also address the controversies in stem cell research. Our varied advisory panel, including cell biologists, physiologists, adult and embryonic stem cell researchers and bioethicists, will ensure the objectivity of all content. "Cellular Universe: The Promise of Stem Cells" will be a 3,500 square-foot exhibition to be planned, designed and prototyped in Fall 2006-Winter 2009, and installed in MSC's second-floor human body exhibition hall in Spring 2009. This exhibition will build on the successful model of "BodyLink," our innovative health science update center funded by a 2000 SEPA grant (R25RR015602) and supported by partnerships with JHU and UMB.
DATE: -
TEAM MEMBERS: Roberta Cooks
resource research Professional Development, Conferences, and Networks
An interview with Jacquelynne S. Eccles, an academic researcher, is presented. Eccles states that after enrolling in graduate school at UCLA in Los Angeles, California, she learned more about what it entailed to be an academic researcher. Eccles avers that she is interested in how people make selections. Eccles believe that the expectations for one's performance and the value that one connects to acting well are heavily socialized within the cultural setting as individuals grow up.
DATE:
TEAM MEMBERS: Héfer Bembenutty
resource research Public Programs
This paper discusses three mediation concept approaches and, consequently, three facets of mediator action. The approaches presented start with a bibliographical review of the concept of mediation present in education and scientific communication studies. These approaches serve as a basis for interpreting a semi-directive interview with the director of the Museum of Morphological Sciences of the Federal University of Minas Gerais (UFMG). They also help us reflect on the complexity of organizing the objectives of a museum action that takes into account the transformational role of the
DATE:
TEAM MEMBERS: Silvania Sousa do Nascimento
resource research Public Programs
Oficina Desafio, Challenge Workshop, is a project of UNICAMP Exploratory Science Museum – the Science Center of the State University of Campinas (Brazil). It is an outreach project, consisting of a fully - equipped mobile workshop constructed on a truck, which visits schools and gives the students open solution real problems challenging them to “design, construct and operate a device” capable of solving the challenge. Analysis of the evaluation forms answered by school students reveals that participants of the challenges perceive it as a “learning opportunity”, in the sense they identify
DATE:
TEAM MEMBERS: Marcelo Firer
resource project Professional Development, Conferences, and Networks
QuarkNet is a national program that partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which QuarkNet is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery. The LHC will come on line during the 5-years of this program. QuarkNet is led by a group of teachers, educators and physicists with many years of experience in professional development workshops and institutes, materials development and teacher research programs. The project consists of 52 centers at universities and research labs in 25 states and Puerto Rico. It is proposed that Quarknet be funded as a partnership among the ESIE program of EHR; the Office of Multidisciplinary Activities and the Elementary Particle Physics Program (Division of Physics), both within MPS; as well as the Division of High Energy Physics at DOE.
DATE: -
TEAM MEMBERS: Mitchell Wayne Randal Ruchti Daniel Karmgard
resource research Public Programs
This thesis adds to the empirical research foundation of informal science education through an investigation of a museum-based astronomy internship for high school students, in the domains of attitudes toward science, knowledge of science, and participatory science learning. Results are presented as three studies, all using a qualitative methodology and including the methods of semi-structured interview, reflective journal, direct observation, audio recording, and artifact collection.
DATE:
TEAM MEMBERS: Nick Stroud
resource research Informal/Formal Connections
Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. An important issue is whether conceptual change can provide a powerful framework for improving instructional practice in such a way that students’ levels of scientific literacy are significantly increased. In this article, the first section provides an overview on the development of conceptual change perspectives. In sections two to six, we examine the
DATE:
TEAM MEMBERS: David Treagust Reinders Duit
resource research Public Programs
In what ways do urban youths’ hybridity constitute positioning and engagement in science-as-practice? In what ways are they “hybridizing” and hence surviving in a system that positions them as certain types of learners and within which they come to position themselves often as other than envisioned? To answer these questions, I draw from two ethnographic case studies, one a scientist–museum–school partnership initiative, and the other, an after-school science program for girls only, both serving poor, ethnically and linguistically diverse youth in Montreal, Canada. Through a study of the micro
DATE:
TEAM MEMBERS: Jrene Rahm
resource project Media and Technology
The goal of this engineering education project entitled EXTRAORDINARY WOMEN ENGINEERS (EWE) is to encourage more academically prepared high school girls to consider engineering as an attractive option for post-secondary education and subsequent careers in order to increase the number of women who make up the engineering workforce. Specific project objectives are to: 1) mobilize America's more than one million engineers to reach out to educators, school counselors, and high school girls with tested messages tailored to encourage participation in engineering education and careers; 2) help high school counselors and science, math, and technology teachers to better understand the nature of engineering, the academic background needed to pursue engineering, and the career paths available in engineering; 3) equip high school counselors and teachers to share this information with students, especially girls; and 4) reach out to girls directly with messages that accurately reflect the field of engineering and will inspire girls to choose engineering. The WGBH Educational Foundation has partnered with the American Association of Engineering Societies (AAES), American Society of Civil Engineers (ASCE), and a coalition of more than 50 of the country's engineering associations, colleges, and universities to fundamentally shift the way the engineering and educational communities portray engineering. Based on a needs assessment performed in 2004, the EWE coalition embraces a communication strategy that focuses on the societal value and rewards of being an engineer, as opposed to the traditional emphasis on the process and challenges of becoming an engineer. This project represents a nationwide outreach effort that includes training opportunities for engineers; targeted Web-based and print resources for students, school counselors and teachers, and engineers; and a range of outreach and marketing activities.
DATE: -
TEAM MEMBERS: Julie Benyo Patrick Natale F. Suzanne Jenniches
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource research Media and Technology
This article explores the development of observation in scientific and everyday contexts. Fundamental to all scientific activity, expert observation is a complex practice that requires the coordination of disciplinary knowledge, theory, and habits of attention. On the surface, observation appears to be a simple skill. Consequently, children may be directed to observe, compare, and describe phenomena without adequate disciplinary context or support, and so fail to gain deeper scientific understanding. Drawing upon a review of science education, developmental psychology, and the science studies
DATE: