This volume explores the integration of recent research on everyday, classroom, and professional scientific thinking. It brings together an international group of researchers to present core findings from each context; discuss connections between contexts, and explore structures; technologies, and environments to facilitate the development and practice of scientific thinking. The chapters focus on: * situations from young children visiting museums, * middle-school students collaborating in classrooms, * undergraduates learning about research methods, and * professional scientists engaged in
In domains with multiple competing goals, people face a basic challenge: How to make their strategy use flexible enough to deal with shifting circumstances without losing track of their overall objectives. This article examines how young children meet this challenge in one such domain, tic-tac-toe. Experiment 1 provides an overviews of development in the area; it indicates that children's tic-tac-toe strategies are rule based and that new rules are added one at a time. Experiment 2 demonstrates that even young children flexibly tailor their strategy use to meet shifting circumstances
Constraints on learning, rather than being unique to evolutionarily privileged domains, may operate in nonprivileged domains as well. Understanding of the goals that strategies must meet seems to play an especially important role in these domains in constraining the strategies even before they use them. THe presente experiments showed that children can use their conceptual understanding to accurately evaluate strategies that they not only do not yet use but hat are more conceptually advanced than the strategies they do not use. In Experiment 1, 5-year-olds who did not yet use the min strategy
Children often learn new problem-solving strategies by observing examples of other people's problem-solving. When children learn a new strategy through observation and also explain the new strategy to themselves, they generalize the strategy more widely than children who learn a new strategy but do not explain. We tested three hypothesized mechanisms through which explanations might facilitate strategy generalization: more accurate recall of the new strategy's procedures; increased selection of the new strategy over competing strategies; or more effective management of the new strategy's goal
Current accounts of the development of scientific reasoning focus on individual children's ability to coordinate the collection and evaluation of evidence with the creation of theories to explain the evidence. This observational study of parent–child interactions in a children's museum demonstrated that parents shape and support children's scientific thinking in everyday, nonobligatory activity. When children engaged an exhibit with parents, their exploration of evidence was observed to be longer, broader, and more focused on relevant comparisons than children who engaged the exhibit without
Interactive museum exhibits have increasingly placed replicated and virtual objects alongside exhibited authentic objects. Yet little is known about how these three categories of objects impact learning. This study of family learning in a botanical garden specifically focuses on how 12 parent-child family units used explanations as they engaged with three plant types: living, model, and virtual. Family conversations were videotaped, transcribed, and coded. Findings suggested that: 1) explanations of biological processes were more frequent than other types; 2) model and virtual plants supported
To help answer questions about the behavior of participants in human-robot systems, we propose the Cognitive Evaluation of Human-Robot Systems (CEHRS) method based on our work with the Personal Exploration Rover (PER). The CEHRS method consists of six steps: (1) identify all system participants, (2) collect data from all participant groups, including the system’s creators, (3) analyze participant data in light of system-wide goals, (4) answer targeted questions about each participant group to determine the flow of knowledge, information, and influence throughout the system, (5) look for
Two studies examined how parent explanation changes what children learn from everyday shared scientific thinking. In Study 1, children between ages 3- and 8-years-old explored a novel task solo or with parents. Analyses of children's performance on a subsequent posttest compared three groups: children exploring with parents who spontaneously explained to them; children exploring with parents who did not explain; and children exploring solo. Children whose parents had explained were most likely to have a conceptual as opposed to procedural understanding of the task. Study 2 examined the causal
Informed by literature on childhood expertise in high interest topics and parent-child conversation in museum settings, this study explored how children’s level of dinosaur expertise influences family learning opportunities in a Natural History Museum. Interviews identified children with high and low dinosaur knowledge and assigned them to expert and novice groups. Parent surveys revealed that expert children were more likely to have home environments where family members shared interests in dinosaurs and provided a variety of dinosaur learning resources. Analysis of family conversations
The authors present an exploratory study of Black middle school boys who play digital games. The study was conducted through observations and interviews with Black American middle school boys about digital games as an informal learning experience. The first goal of the study is to understand the cultural context that Black students from economically disadvantaged inner-city neighborhoods bring to playing digital games. The second goal of the study is to examine how this cultural context affects the learning opportunities with games. Third, the authors examine how differences in game play are
DATE:
TEAM MEMBERS:
Betsy James DiSalvoKevin CrowleyRoy Norwood
In this article, we use two studies conducted in art museum settings as a means to discuss some of the opportunities and challenges for the field of informal art education. The first study explores artmaking processes that take place in a children’s museum, highlighting the need to consider the social nature of learning in informal environments. Second, a study with families in an art museum explores art appreciation and interpretation. Taken together—the creating and the responding—these two studies are used to point out how we might trace disciplinary processes in art beyond schools into the
Historically, most efforts to improve public knowledge of science and technology have focused on improvements in K-12 schooling, although post-secondary education and informal education have also been mentioned as important factors. Currently, little empirical data exist to determine how or when to best leverage science and technology education energies and resources. This article examines a range of factors potentially contributing to adult knowledge of science and technology. Results from a telephone survey of 1,018 adult residents in greater Los Angeles, California (United States) showed