Sciencenter will use a co-development process to strengthen rural engagement with hands-on and inquiry-based STEM for families and children. The museum will initiate the project in partnership with Moravia Central School District and Groton Public Library. The project team will also collaborate with advisors who have expertise in reaching rural audiences. Project activities will increase the museum's understanding of rural communities' needs around STEM. The museum will work with additional rural partners to develop activities and programs that meet identified needs. An external evaluator will track project progress and measure results. This evaluator will also train the museum's staff on data collection and recording methods. Data analysis throughout the project will support changes in programs and activities as needed.
The Aldrich Contemporary Art Museum will amplify its partnership with Hart Magnet School, a Title 1 elementary school in urban Stamford, Connecticut, by increasing exposure and access to the arts for first-fifth graders, their families, and educators. A new program model, leveraging the museum's artist exhibitions, will focus on technology and an inquiry-based approach to science. Students, educators, and families will be encouraged to see and think in new ways through on-site STEAM tours at the museum, artist-led workshops at Hart, teacher professional development, and afterschool family activities. Outside evaluators will work with the project team to develop goals and associated metrics to measure how the model of museum-school partnership can enhance student achievement, engage families more deeply in their child's school experience and community, and contribute to teacher professional development. The evaluator will also train museum staff on best practices for program assessment.
The Museum of Science in Boston, Massachusetts is one of the world’s largest science centers and the most visited cultural institution in New England. Located in Science Park, a piece of land that spans the Charles River, the museum is conveniently situated close to Boston and Cambridge. The museum has more than 700 interactive exhibits and a number of live presentations offered daily. One of these daily shows include live animal presentations, where museum visitors can learn more about some of the many animals that the museum cares for in its live animal center. An evaluation of these live
DATE:
TEAM MEMBERS:
Sarah RosenthalKristina OhlSadia Sehrish IslamMaría José Brito Páez
The Bay Area Discovery Museum will address the need for STEM education by delivering engineering outreach programming to schools and libraries throughout the San Francisco Bay Area. The museum's mobile engineering lab, Try It Truck, will introduce the engineering design process to students and teachers in grades K-5 with hands-on activities (both on and off the truck) where they can collaborate, experiment, and design solutions to engineering challenges. The Try It Truck will serve 21,600 children, parents, and educators throughout the Bay Area, with at least 50 percent of all participants coming from underserved communities and Title I schools. The museum will work with an external evaluator to design survey instruments for both formative and summative evaluation, analyze summative evaluation data, and produce a report. Museum staff will share project results with colleagues at national and statewide conferences.
The Children's Museum of the Upstate will expand its STEAM outreach programming to benefit both teachers and students in the Greenville County Schools. The museum will serve 2,000 students through STEAM programs held on-site at their elementary schools, with a focus on curriculum areas where standardized test scores indicate that students are struggling. A new program for preschoolers will be piloted in the school district's six child development centers. The pre-school classes will visit the museum for a field trip that includes free exploration time and a tailored storytime lesson. The museum will also present four teacher workshops reaching 400 educators to assist them in teaching STEAM topics. An independent evaluator will conduct an evaluation of the outreach programming and develop assessment tools to help determine how the curriculum can support student achievement and result in improved standardized test scores.
The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
The National Federation of the Blind (NFB), in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota (SMM), has developed the Spatial Ability and Blind Engineering Research (SABER) project to assess and improve the spatial ability of blind teens in order to broaden their participation in STEM fields. The goals of the project include: 1. Develop and investigate the reliability of a tactile instrument to test blind and low vision youths’ spatial ability levels. 2. Contribute to the knowledge base of effective practices regarding informal STEM
DATE:
TEAM MEMBERS:
Gary TimkoTheresa GreenDaniel KaneWade GoodridgeLaura Weiss
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
This report shares the results of a year-long study of the impact of IMLS grants (1998-2003) though programs that served youth aged 9-19. Nearly 400 museum and library programs were surveyed about their goals, strategies, content, audience, and structure, as well as about their impact, effectiveness, and outcomes.
How to determine a sample size for studying your informal learning program
What’s important to consider when selecting a sample size, or participant group size, for studying your informal (science) education program? What value does a small sample size have? If program managers have ample resources for collecting a lot of data, what factors are important to consider?
Here is a collection of guidelines and examples for use in making an informed decision about determining the sample size for studying your informal learning program. To design a study whose findings are more authentic
This project aims to formally define what a sense of belonging means in the science & natural history museum context as a way to measure inclusivity efforts. We think that most of the experiences that make up a museum visit have a relatively neutral effect on visitor sense of belonging. However, visitors may experience moments that make them feel distinctly positive or negative, and these moments that matter may influence a visitor’s STEM engagement, interest, and/or identity.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
In collaboration with the Association of Science-Technology Centers (ASTC), Association of Children’s Museums (ACM) and Immersive Learning Research Network (iLRN), and with support from the National Science Foundation, the Institute for Learning Innovation will virtually bring together 4-5 dozen diverse (expertise and role, background, demographics, geography) thoughtful STEM learning professionals to collaboratively re-imagine the future of the science museum community, in particular the particularly vulnerable small to medium size science museum sector. Participants will be asked to think