ChemAttitudes: Using Design-Based Research to Develop and Disseminate Strategies and Materials to Support Chemistry Interest, Relevance, and Self-Efficacy (ChemAttitudes, NSF DRL-1612482) is a collaborative project between the Museum of Science, Boston (MOS), the National Informal STEM Education Network (NISE Net), and the American Chemical Society (ACS) among others. As a part of this project, researchers and educators from MOS and the Science Museum of Minnesota (SMM) used design-based research to create chemistry hands-on activities meant to positively impact visitors’ attitudes towards
Summative evaluation of the Marcellus Matters: EASE project. Marcellus Matters: Engaging Adults in Science and Energy (EASE) was a program of Penn State University’s Marcellus Center for Outreach and Research (MCOR), in collaboration with other experts across the university. The first year of program activities took place in 2012, and the project continued through September 2016. EASE was a multidisciplinary initiative that provided adults in rural Pennsylvania with opportunities to increase their knowledge of science and energy systems and engage in scientific inquiry and investigation
The most important consideration in evaluating chemistry outreach efforts is how to best use the evaluation to serve project needs. Evaluation should be about making programs more effective—at communicating ideas, changing attitudes, inspiring action, or reaching wider audiences, for example. A well-conducted evaluation typically contributes to the quality of a project by helping its leaders better define their goals, identify important milestones and indicators of success, and use evidence to support ongoing improvements. At its best, evaluation is an integral part of project design and
Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community lacks a cohesive, evidence-based guide for designing effective communication activities. This report is organized into two sections. Part A: The Evidence Base for Enhanced Communication summarizes evidence from communications, informal learning, and
The National Academies of Sciences' Board on Chemical Sciences and Technology (BCST) and Board on Science Education (BOSE) are collaborating on a three-year project to develop a framework for effective chemistry communications, outreach, and education in informal settings. The initiative will include a "landscape" study that will synthesize lessons learned from practice along with education and learning science research about chemistry learning and teaching in informal and formal settings. The overall process will define a set of principles for engaging the public with chemistry and embed these principles into a broad framework that chemists and informal science education professionals could use to identify a set of effective strategies for a given audience and a given educational or communication goal. The guidance and tools resulting from this activity, which is a chemistry-specific case study, should be more generally applicable to science and engineering communications, informal education and outreach. Findings are also likely to apply to aspects of formal education.
This is the final report of the Informal Science Education (ISE) supplemental two year NSF grant for the partnership between CCI Solar Fuels and Westside Science Club that ran between October 2012 and July 2014. After a brief program overview and goals, it lists the program components. Then it traces the history of each partner, including a partnership with Wildwood High School in Santa Monica, and LA Makerspace. Each section also briefly outlines the evaluation performed by a professional evaluator. The program will continue with a partnership with a local Pasadena, CA museum called Kidspace
The attached document describes the results of evaluation of affective and cognitive impact of the Fusion Science Theater show model. Affective gains were measured by post-show questionnaires and cognitive gains were measured by having audience members vote for their prediction to the investigation question before and after the "lesson" of the show. Appendix includes instruments.
DATE:
TEAM MEMBERS:
Madison Area Technical CollegeDr. Joanne Cantor
This is the poster for the CCI Solar Fuels and Westside Science Club collaboration presented by Michelle Hansen and Benjamin Dickow at the 2014 AISL PI meeting in Washington DC.
DATE:
TEAM MEMBERS:
California Institute of Technology Center for Chemical InnovationMichelle Hansen
The Center for Chemistry at the Space-Time Limit (CaSTL)’s outreach program in collaboration with the California Science Project at Irvine (CSPI), housed at the Center for Educational Partnerships at UC Irvine designed, created, implemented, and consistently refined a science program for 8-12 year old students at the Boys and Girls Club(BGC) in Santa Ana, California. The year-long weekly program and 4-day summer camp consisted of hour-long lessons designed to connect to CaSTL’s research goals of investigation at the microscopic level. Appendix includes observation protocol, performance measure
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE:
-
TEAM MEMBERS:
WGBH Educational FoundationPaula Apsell