Through Project BUILD, a STAR Library Network (STAR Net) program funded by the National Science Foundation, the American Society of Civil Engineers (ASCE) and the Space Science Institute’s National Center for Interactive Learning (NCIL) offered the virtual Dream, Build, Create program which consisted of (1) the award-winning documentary Dream Big: Engineering Our World and (2) five live-streamed panels of diverse engineers (Dream Teams) who shared their stories of what it means to be an engineer.
The external evaluation, conducted by Education Development Center (EDC), aimed to examine how
The Space Science Institute’s (SSI) National Center for Interactive Learning (NCIL), in partnership with the American Society for Civil Engineers (ASCE) and the University of Virginia (UVA), was awarded a grant from the National Science Foundation (NSF) to develop and implement a 3-year program, Project BUILD (Building Using an Interactive Learning Design). Project BUILD aims to bring together public library staff from six libraries (three rural and three urban) and professional engineers from ASCE to engage youth in grades 2-5 and their families in age-appropriate, technology-rich
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.
The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The Multi-Site Public Engagement with Science—Synthetic Biology (MSPES) initiative was an Innovations in Development project funded by the National Science Foundation (DRL-1421179) through the Advancing of Informal STEM Learning program (AISL). MSPES promoted public engagement with science (PES)—a model of mutual dialogue and learning between public and scientist audiences—through the creation and distribution of PES kits to nearly 200 informal science education sites around the country. Kits included two types of learning experiences: (1) forum programs during which scientists and teen or
Underrepresented minorities (URMs) are less than 10% of engineering faculty, despite comprising nearly a third of the nation's population. A common explanation for their disproportionate representation, at the engineering faculty level, is related to a lack of access to effective mentorship from other faculty. This NSF INCLUDES Design and Development Launch Pilot project will expand a new mentoring and advocacy-networking paradigm to bring together two stakeholder groups: (1) underrepresented minorities (URMs) who are engineering faculty and (2) well-regarded (primarily non-URM) emeriti/retired engineering faculty. A previously-funded NSF project found that this mentor-mentee pairing was viewed favorable by both parties and beneficial, particularly by the URM engineering faculty. Because of these results, the investigators proposed to scale, test, and evaluate the approach on a broader scale by creating national infrastructural network partners to help increase capacity to serve a greater number of URM engineering faculty and to introduce tele-mentoring and training models to serve URM faculty who work in remote geographical locations with very little access to mentors.
The project will use a multi-phased phenomenological, mixed method research design to gain greater understanding of the ways in which the URM faculty and emeriti faculty experience the opportunities afforded by the project. Further, the investigators plan to collect data to examine how project participants perceive and experience conventional, direct communications (e.g., telephone calls, e-mail, and in-person meetings)through the mentoring process versus the use of Embodied Conversational Agents (ECAs), anthropomorphic interface agents that engage a user in real-time dialogue by using verbal-nonverbal channels to emulate the in-person experience. This project has the potential to broaden participation in the engineering professoriate and opens up new possibilities for supporting URM engineering faculty.
DATE:
-
TEAM MEMBERS:
Comas HaynesValerie ConleySylvia MendezKinnis GoshaRosario Gerhardt
This report presents the findings from the summative evaluation of the Multi-Site Public Engagement with Science project (MSPES), funded by an NSF AISL award. MSPES aimed to bring together public audiences and professional scientists through “Building with Biology” programming - public events and forums centered on the topic of synthetic biology. The goal was to promote meaningful, two-way dialogs around this area of science, which is rapidly advancing and raising interesting social and ethical questions. The project team sought to move beyond a traditional "public understanding of science"
The Montana Girls STEM Collaborative brings together organizations and individuals throughout Montana who are committed to informing and motivating girls to pursue careers in STEM – Science, Technology, Engineering and Mathematics. The Collaborative offers professional development, networking and collaboration opportunities to adults who offer and/or support STEM programs for girls and other youth typically under-represented in STEM. The vision of Montana Girls STEM is that every young person in Montana has the opportunity to learn about STEM careers and feels welcome pursuing any dream they
DATE:
TEAM MEMBERS:
Suzi TaylorRay CallawayCathy Witlock
The Society for Science and the Public’s Advocate Grant Program provides selected Advocates with funding, resources, and information. Advocates include classroom teachers, school and district administrators, university professors, and informal science educators in community-based programs. The role of the Advocate is to support three or more underserved middle or high school students in the process of advancing from conducting a scientific research or engineering design project to entering a scientific competition. Advocates receive a stipend of $3,000; opportunities to meet and interact with
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners). A total of 86 participants representing these diverse audience perspectives were asked to review an episode of the SciGirls program Hábitat en Caos/Habitat Havoc and two role model scientist profile videos featuring Karin Block and Victoria Velez. Scheduled early in Year 1 of the
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners).
Appendix includes logic model.
The Art of Science Learning Project (AoSL) is a National Science Foundation (NSF)-funded initiative, founded and directed by Harvey Seifter, that uses the arts to spark creativity in science education and the development of an innovative 21st century STEM workforce. This research was guided by three main hypotheses: (1) Arts-based innovation training, compared to traditional innovation training, improves an individuals creative thinking skills including critical thinking, divergent thinking, problem identification, convergent thinking and problem solving; (2) Arts-based innovation training