This project will develop standardized, exportable and comparable assessment instruments and models for Women In Engineering (WIE) programs nationwide, thus allowing them to assess their program's activities and ultimately provide data for making well-informed evaluations.
To accomplish this goal, the principal investigators at the University of Missouri and Penn State University will work over a three-year period with their institutions' WIE programs and three cooperating programs at Rensselaer Polytechnic Institute, Georgia Tech, and University of Texas at Austin. With these five programs that collectively represent a variety of private and public, years of experience for WIE directors and student body characteristics, the investigators will pilot, revise, implement, conduct preliminary data analysis and disseminate easy-to-access, reliable and valid assessment instruments. The principles of formative evaluation will be applied to all instruments and products. All institutions will use the same set of instruments, thus allowing them to have access to powerful benchmarking data in addition to the data from each of their respective institutions.
A prior project, the Women's Experience in College Engineering Project (WECE) sought to characterize the factors that influence women students' experiences and decisions by studying college environments, events and support programs that affect women's satisfaction with their engineering major, and their decisions to persist or leave these majors. In contrast to WECE's macro-level and student focus, this proposal's target audience is WIE directors, with a focus on WIE programs, not students.
Women in Engineering programs around the United States are a crucial part of our country's response to the need for more women in engineering professions. There are about 50 WIE programs nationwide. Half have expressed interest in this effort. WIE directors will benefit by having ready-made assessment tools that will allow them to collect data on programs, evaluate these programs, and make decisions on how to revise programs and / or redistribute limited resources to maximize overall program effectiveness. Data from these instruments will also provide substantiated evidence for administrators, advisory boards and potential funding agencies. Finally, because these instruments will be available nationwide, programs will have the opportunity to take advantage of powerful benchmarking data for their decision-making processes.
This project provides the next logical step in the national movement to recruit and retain women in engineering.
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
From 2014-2016, Pacific Science Center continued and expanded the Science Technology Engineering and Math Out-of-School-Time (STEM-OST) program with the purpose of delivering programs to stem the summer learning loss. Specifically, the project expanded to new venues in the Puget Sound (Washington) region; modified the lessons and activities so they also served students in grades K-2; aligned the curriculum with the Next Generation Science Standards (recently adopted by the Washington State Legislature) and increased the number of Family Science Days and Family Science Workshops offered to
As part of the National Science Foundation (NSF) funding for the In Defense of Food project directed by Kikim Media, the independent evaluation firm Knight Williams Inc.1 conducted a summative evaluation of the project’s key deliverables, which included: a PBS television broadcast program, an outreach effort, and an educational curriculum. This report (Study 3 of 3) considers the In Defense of Food curriculum and, in particular, educators’ reactions to the curriculum in terms of perceived appeal, ease of implementation, and learning value. Feedback was gathered from educators who were surveyed
The purpose of this proposal is to convene scholars at a two-day conference to closely examine validity-related measurement issues, create a guidelines for the field of mathematics education research that addresses key ideas (e.g., validity, validity arguments, evidence for validity and measurement at-scale), and set a clear pathway for scholars to discuss quantitative measurement within mathematics education. Invitees will include a mix of young, older and diverse scholars in mathematics education research. Products include refereed journal articles along with a website.
The workshop will engage the Mathematics Education, Policy, Statistical, Psychometrics and other education research communities in examining and critiquing measurement validity evidence of mathematics education research with the long-term goal of increasing the quality of quantitative inference in mathematics education research (to include improvements in the training of doctoral students).
Project TRUE seeks to increase the interest of high school students in pursuing science, technology, engineering and mathematics majors by increasing participants’ exposure to urban ecology research conducted with college mentors. The Lifelong Learning Group is conducting research that explores the program’s longer-term influence on academic and career choices. More specifically, the research addresses the question: How do the four key elements of youth development in Project TRUE contribute to pursuit of advanced STEM study and career path in the short- and medium-term? This report presents
The primary goal of Project TRUE is to increase the interest of high school students in pursuing science, technology, engineering, and mathematics (STEM) majors, by increasing their exposure to urban ecology research conducted with college mentors. Project TRUE also establishes a research and education partnership between the Wildlife Conservation Society (WCS) and Fordham University, to implement and evaluate the effectiveness of a tiered mentorship educational model. The model leverages both formal (Fordham) and informal (WCS) educational practices and expertise. This evaluation report from
Citizen science has proven useful in advancing scientific research, but participant learning outcomes are not often assessed. This case study describes the implementation and tailoring of an in-depth assessment of the educational impact of two citizen science projects in an undergraduate, general education course. Mixed-methods assessment of citizen science within a college classroom demonstrates that public participation in scientific research can positively alter attitudes towards science. The timing and type of assessments yielded significantly different results and qualitative assessment
DATE:
TEAM MEMBERS:
Tyler VitoneKathryn StoferM. Sedonia SteningerJiri HulcrRobert DunnAndrea Lucky
A survey was conducted during the University of Manchester’s 2014 ‘Science Extravaganza’, which saw the participation of over 900 Key Stage 3 (ages 11–14) students in a range of interactive demonstrations, all run by active University researchers. The findings of this study suggest that a new approach is necessary in order to use these large science events to actively engage with school students about the career opportunities afforded by science subjects. Recommendations for such an approach are suggested, including the better briefing of researchers, and the invitation of scientists from
DATE:
TEAM MEMBERS:
Sam IllingworthEmma LewisCarl Percival
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Through a unique university-zoo partnership, Project TRUE engages New York City high school students in authentic urban ecology field research in the surrounding metropolitan area. Central to the project design is a tiered mentorship model, in which Fordham University professors mentor undergraduate and graduate ecology students, who in turn mentor high school students from communities underrepresented in STEM fields. Project TRUE also pairs the university
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Grant funds for this project support research into the needs and preferences of the audiences to assemble content and test two pilot issues of a peer-reviewed journal supporting innovative
advances that work at the intersection of formal and informal science, technology, engineering, and math (STEM) education.
The overseas internship programme offered at Tokyo Institute of Technology as part of the science communication curriculum is highly significant, as it prompts graduate students to acquire new skills and awareness levels, including an enhanced meta-level understanding of the importance and complexity of human communications. The capacity to correlate and respond on-site in human interaction can be gradually cultivated during the internship as students experience diverse communication environments. Moreover, the exposure to different organisational, cultural and social environments helps
DATE:
TEAM MEMBERS:
Kayoko NoharaMike NortonMiki SaijoOsamu Kusakabe