Skip to main content

Community Repository Search Results

resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Innovations in Development project will research and produce science media based on the role that interest, motivations, identify, and values play in engaging diverse, millennial audiences in a dynamic media environment. Using a design-based research approach the project team will develop Millennial Science Media Engagement Profiles (a set of categories describing different audience types who engage with science media in different ways). It will design and test science media content (text, audio, graphics, video), placement and platform use for millennials; and make conclusions around science media storytelling and outreach tactics that spark interest and engagement, the precursors to learning. Broader impacts include contributing significant new knowledge about millennials interest and engagement in science while they are at a stage in life making critical career decisions. It will also provide a model for other science media producers providing new protocols for creating targeted digital media for this specific audience. And further impacts include reaching a large national audience through social media. The project is a collaboration between KQED and researchers at Texas Tech.

The research will focus on the distinctive experience and interest of "millennial" science consumers. It builds on a previously funded national survey and series of focus groups with millennials looking at their science media preferences versus other generations. With these survey results this project will build profiles of millennial audiences based on two factors: level of science curiosity and level of science media engagement. The researchers will use a previously validated Science Curiosity Scale. The Millennial Profiles will be validated in two ways: through performance-based survey questions and through internet audience behavior analysis using existing digital analysis tools. KQED will produce different science media content and send it to certain groups conducting A/B testing to validate profiles online. The profile assumptions will continue to be tested until the team can effectively predict the kinds of science content that different profile groups prefer. The research will use a study protocol used in other domains to bridge the gap between lab and real-world settings. The protocol involves four steps: initial hypothesis development; ante experimental simulation; real-world communication; and ex post experimental simulations. Following the profile validation, the protocol will be used to test the efficacy of new KQED Science content, testing the variables that contribute to millennial engagement.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Jennifer Brady Asheley Landrum
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The uses of technologies in emergency management and public safety are emerging rapidly, but it could take years for school STEM curricula to catch up with the technologies that are already being deployed in the field. Informal learning environments, such as Teen Science Cafés, provide a compelling venue for youth learning about rapidly-developing STEM fields such as technology. The floods and devastation caused by Hurricane Harvey provide a timely learning opportunity for them. This project, in addition to developing new materials for learning about technologies, will provide much-needed baseline research on teens' understanding of technology, technology careers, and emergency preparedness. Leveraging the robust platform of the NSF-funded Teen Science Café, the Maine Mathematics and Science Alliance will build upon its existing partnership with Science Education Solutions to develop and implement a package of educational activities, tools, and resources for a Teen Science Café that is focused on community flood events and response, using Hurricane Harvey as a model and case study. The materials will focus on advances in sensor technology, data visualization, social media, and other mobile communication apps used to detect, monitor and respond to flooding and natural disasters. The package of materials will be embraced by 20 sites in Maine. The goal is to engage at least 600 youth in themed Cafés focusing on how technology was used to respond to Harvey and is being used to manage and respond to flooding more generally. An important related goal is to conduct baseline research on what teens currently know about the flood-related technologies, as well as what they learn about it from this experience derived from recent floods in Texas, Florida, and the Caribbean islands.

A research goal of our work was to collect baseline information on teens’ level of knowledge about the role of technology in responding to a variety of natural disasters. To our knowledge, the field has not developed measures of knowledge of this increasingly important domain. We developed a quick and easy-to-administer 10-item multiple-choice measure, which we presented as a “trivia game” to be done sometime during the 90-minute Café. We did not track pre- to post-café changes in knowledge, because the Cafés emphasized very different pieces of technology as well as different types of natural disasters. Rather, we wished to establish a starting point, so that other researchers who are engaged in ERT efforts with teens have both an instrument and baseline data to use in their work.

A sample of 170 youth completed the questionnaire. The average correct response rate was 4.2 out of 10, only slightly higher than the chance of guessing correctly (3 out of 10). This suggests teens have limited baseline knowledge of Emergency Response Technology and our Cafés therefore served an important purpose given this lack of knowledge. Indeed, for half of the questions at least one incorrect answer was selected more often than the correct answer! Note that there were no statistically significant correlations between age and gender and rates of correct answers.

Three things are clear from our work: 1) Youth need and want to know about the vital roles they can play by learning to use technology in the face of natural disasters; 2) Teens currently know little about the uses of technology in mitigating or responding to disasters; and 3) Teen Science Cafés provide a timely and relatively simple way of sparking interest in this topic. The project showed that it is possible to empower youth to become involved, shape their futures, and care for their communities in the face of disasters. We plan to continue to expand the theme of Emergency Response Technology within the Teen Science Café Network. Reaching teens with proactive messages about their own agency in natural disasters is imperative and attainable through Teen Science Cafés.
DATE: -
TEAM MEMBERS: Jan Mokros
resource project Exhibitions
Engagement is the cornerstone of learning in informal science education. During free-choice learning in museums and science centers, visitor engagement shapes how learners interact with exhibits, navigate through exhibit spaces, and form attitudes, interests, and understanding of science. Recent advances in multimodal learning analytics are creating novel opportunities for expanding the range and richness of measures of visitor engagement in free-choice settings. In particular, multimodal learning analytics offer significant potential for integrating multiple data sources to devise a composite picture of visitors' cognitive, affective, and behavioral engagement. The project will center on providing a rich empirical account of meaningful visitor engagement with interactive tabletop science exhibits among individual visitors and small groups, as well as uncovering broader tidal patterns in visitor engagement that unfold across exhibit spaces. A key objective of the project is creating models and practitioner-focused learning analytic tools that will inform the best practices of exhibit designers and museum educators. This project is funded by the Advancing Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, AISL funds research and innovative approaches and resources for use in a variety of settings. The research team will conduct data-rich investigations of visitors' learning experiences with multimodal learning analytics that fuse the rich multichannel data streams produced by fully-instrumented exhibit spaces with the data-driven modeling functionalities afforded by recent advances in machine learning and educational data mining. The research team will conduct a series of visitor studies of naturalistic engagement in solo, dyad, and group interactions as visitors explore interactive tabletop science exhibits. The studies will utilize eye trackers to capture visitors' moment-to-moment attention, facial expression analysis and quantitative field observations to track visitors' emotional states, trace logs generated by exhibit software, as well as motion-tracking sensors and coded video recordings to capture visitors' behavioral interactions. The studies will also use conversation recordings and pre-post assessment measures to capture visitors' science understanding and inquiry processes. With these multimodal data streams as training data, the research team will use probabilistic and neural machine learning techniques to devise learning analytic models of visitor engagement. The project will be conducted by a partnership between North Carolina State University and the North Carolina Museum of Natural Sciences. The research team will 1) design a data-rich multimodal visitor study methodology, 2) create the Visitor Informatics Platform, a suite of open source software tools for multimodal visitor analytics, and 3) launch the Multimodal Visitor Data Warehouse, a curated visitor experience data archive. Together, the multimodal visitor study methodology, the Visitor Informatics Platform, and the Multimodal Visitor Data Warehouse will enable researchers and practitioners in the informal science education community to utilize multimodal learning analytics in their own informal learning environments. It is anticipated that the project will advance the field of informal STEM learning by extending and enriching measures of meaningful visitor engagement, expanding the evidence base for visitor experience design principles, and providing learning analytic tools to support museum educators. By enhancing understanding of the cognitive, affective, and behavioral dynamics underlying visitor experiences in science museums, informal science educators will be well-positioned to design learning experiences that are more effective and engaging. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: James Lester James Minogue Jonathan Rowe North Carolina Museum of Natural Sciences
resource research Public Programs
This poster was presented at the 2018 Visitor Studies Association Conference. iSWOOP is a multi-year, multi-focus project, bringing national park-based research to visitors through innovative scientist-park ranger collaborations. As part of this study, researchers at the Institute for Learning Innovation set out to understand how visitor interests emerge during interpreter-facilitated conversations in national parks; how visitor interests relate to topics and facilitation strategies used by interpreters; and to what degree interactions might spark or reinforce ongoing interests.
DATE:
resource project Informal/Formal Connections
A significant body of innovative and potentially useful research about inclusion and diversity is surfacing in museum studies graduate programs across the country. This research often reflects the changing demographics of American society and our growing awareness of the complex dimensions of identity. However, the work is rarely available in venues or formats that are useful to museum practitioners, researchers, and decision-makers. To fill this gap in information sharing, we will conduct a qualitative meta-analysis of Master’s and Doctoral theses that address issues of personal and group identity and representation in museums, followed by interviews with a sample of the authors. This work will describe the ways museums represent and respond to issues of personal and group identity, with a particular focus on looking for evidence of impact and successful and emerging practices. A second goal is to understand how the engagement in the process of research influences the subsequent practice of current professionals.
DATE: -
TEAM MEMBERS: John Fraser
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Websites, Mobile Apps, and Online Media
The ACCEYSS (Association of Collaborative Communities Equipping Youth for STEM Success) Network and Model project, an NSF INCLUDES Design and Development Launch Pilot, at Texas State University is forming a university-community partnership between interdisciplinary researchers (ACCEYSS research team), faith leaders and other community partners to implement an innovative model that prepares underrepresented and underserved youth to pursue undergraduate science, technology, engineering, and mathematics (STEM) degrees. The inaugural ACCEYSS network will include Texas State University, San Marcos Consolidated Independent School District, San Marcos Youth Service Bureau, City of San Marcos-Office of the City Manager, Hays County Youth Initiative, the Calaboose African American History Museum, and several local faith-based organizations. Many historic advancements have been made through the efforts and activities of faith and community leaders uniquely poised to motivate and galvanize community-based action. A collaboration among these academic institutions, social/cultural organizations, and faith partners to work with the families and youth of underrepresented/underserved populations will be an essential asset for generating new perspectives and ideas for improving STEM academic and career outcomes related to broadening participation in the scientific enterprise.

During this launch pilot, the ACCEYSS research team and network will collaborate to design and develop the ACCEYSS model as a culturally-relevant, blended-learning strategy that integrates online and in-person STEM enrichment activities (e.g., summer institute, afterschool clubs) that are aligned with the Science and Engineering Practices and Disciplinary Core Ideas Dimensions of the K-12 Next Generation Science Education Standards. The collective impact framework will be used to build diverse capacity, leverage asset-based community development, and sustain mutually reinforcing non-exclusive policies and practices for STEM diversity and inclusion. Additionally, in this launch pilot, a multifaceted design-based research approach will be utilized to support middle and high school students' interest in and pursuit of STEM studies.
DATE: -
TEAM MEMBERS: Shetay Ashford Kristy Daniel (Halverson) Dana Garcia
resource project Websites, Mobile Apps, and Online Media
The American Association for the Advancement of Science (AAAS) is creating, implementing and evaluating a forum for the NSF INCLUDES broadening participation community of practice and for engaging the NSF INCLUDES awardees and science, technology, engineering and mathematics (STEM) researchers across the nation to expand the NSF INCLUDES broadening participation network. The NSF INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in STEM discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields.

The NSF INCLUDES Open Forum will use the AAAS Trellis networking platform and the organization's experience engaging communities of practice focused on broadening participation, STEM education and STEM research. The project builds on the success of a prior NSF INCLUDES Conference award (HRD-1650509) that was addressing goals to define networking needs of the first round of NSF INCLUDES Design and Development Launch Pilots (DDLP); to develop design specifications for NSF INCLUDES networking, curating of resources, and supporting communities of practice; and to propose tools, techniques, capacities and functionalities for an NSF INCLUDES national network.

The NSF INCLUDES Open Forum project includes advisory board members with expertise in networking platforms and others with broadening participation knowledge and experience. A yearly conference for NSF INCLUDES awardees will offer participants an opportunity to learn about how Trellis platform upgrades, functionality and technology options (e.g., a smartphone application) can be used in new ways to engage a broader community of partners interested in broadening participation in STEM research and education contexts. An external evaluator will assess the activities and outcomes of the NSF INCLUDES Open Forum both during implementation and at project end. The PIs will also communicate the outcomes of the project to broader audiences, both academic and non-academic, and encourage a dialogue within the NSF INCLUDES community about the use of technology for organization and communication within a network.
DATE: -
TEAM MEMBERS: Shirley Malcom Josh Freeman
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.

The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE: -
TEAM MEMBERS: Joe Hastings Armelle Casau Obenshain Koren Kersti Tyson Angelo Gonzales
resource project Professional Development, Conferences, and Networks
Project SYSTEMIC (A Systems Thinking Approach to STEM Ecosystem Development in Chicago) will apply systems thinking to a community-level STEM ecosystem development effort in one of Chicago's largest and most distressed neighborhoods. The project aims to broaden participation of African American and low-income Chicago Public School students (preK-12) in STEM learning opportunities. The proposed model of collaborative change for this project builds on the work of two coordinated collective impact initiatives--the Chicago STEM Pathways Cooperative and Austin Coming Together, a network of local organizations committed to improving educational and economic outcomes for the community. A key feature of this project is that it adds innovative, interactive, visual problem structuring and solving strategies to highlight and uncover the systemic interdependencies that contribute to the BP challenge for African American youth. The project will convene a series of workshops to engage community stakeholders in the mapping of the STEM ecosystem. A broad and representative cross-section of community stakeholders will design and develop evidence-based STEM ecosystem organizing and implementation strategies. Key outcomes anticipated from this project are the development of a shared understanding, agenda, activities, and commitment to collectively address the underlying challenges of STEM access and participation for African American youth. The goal of this community-driven project is to develop a viable system model that elevates neighborhood voices, historically excluded from the problem-solving table and decision-making processes, to leverage existing assets, build local capacity, increase messaging and awareness of the value of STEM, identify needed new programs, and develop coordination/resource sharing mechanisms across partners to support implementation. The evaluation of this project will be grounded in systems thinking and culturally-responsive approaches that seek to understand the diverse perspectives of stakeholders while measuring progress toward project goals. Evaluation data will be used to assess the problem structuring process, to evaluate the organizational strategy designed to address the structured problem, and to support adaptive learning among stakeholders.
DATE: -
TEAM MEMBERS: Natasha Smith-Walker Elizabeth Lehman
resource project Professional Development, Conferences, and Networks
The National Alliance for Partnerships in Equity Education Foundation (NAPE) will partner with a diverse group of organizations from six states (CO, ID, NM, NV, UT, and WY) to form the Intermountain STEM (IM STEM) project, an NSF INCLUDES Design and Development Launch Pilot project focused on the goal of increasing the participation and closing achievement gaps in STEM education, including career and technical education. These organizations whose programs impact the formal STEM education system include: Departments of Education; Higher Education agencies; governor supported STEM Action Centers; universities; secondary school districts; community colleges; Department of Energy National Labs; businesses, non-profits and others. The partners in this effort will identify effective practices focused on the common set of objectives and create a model to bring them to scale by employing a collective impact approach. Through the project, the participating organizations will create a common agenda, identify shared metrics, implement mutually reinforcing activities, and maintain continuous communication. This effort addresses directly the lack of diversity of the STEM workforce; a societal challenge of significant magnitude because of its impact on innovation, national security, environmental safety, and income inequality in the US. The IM STEM?s mission to increase the diversity of students who are successful in STEM education will create a more STEM literate society, ensure the contributions of a diverse STEM workforce, and level the playing field for entrance into high wage STEM careers.

The capacity of IM STEM to bring large well-resourced organizations to bear on the broadening participation challenges in STEM will advance the knowledge of how creative social innovations, like collective impact, can create transformative institutional and cultural change. The collection, evaluation and scaling of effective research-based solutions to close equity gaps in STEM will advance inclusion in STEM. Initially, the IM STEM project will pilot the scaling of NAPE's professional development (PD) programs - Program Improvement Process for Equity and Micromessaging to Reach and Teach Every Student - that have proven to impact equity gaps in STEM and career and technical education (CTE). The six participating states are interested in scaling their current small scale implementation of NAPE's PD programs and will also incorporate selected emerging practices. This design and development launch pilot will provide the vehicle for identifying support mechanisms for scaling of the PD and the identification of additional scaling opportunities with other effective practices of the participating partners. These efforts have the potential to develop a model for expansion to other states wanting to scale effective practices.
DATE: -
TEAM MEMBERS: Mimi Lufkin Alexander Carter Angela Hemingway Anne Jakle Susan Thackeray
resource project Making and Tinkering Programs
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.

ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE: -
TEAM MEMBERS: Shaik Jeelani Bruce Crawford Mohammed Qazi Jeffrey Gray Jacqueline Brooks