Skip to main content

Community Repository Search Results

resource project Exhibitions
With snow providing water for about 2 billion people worldwide and playing a major role in the Earth's climate through its high albedo and insulation properties, on-going alterations in global snow resources pose real and extremely expensive societal adaptation/mitigation problems. The project goals are to:


Create opportunities for the public to learn about the vital role that snow plays in climate, water resources, and human lives.
Produce a better understanding of how culture affects informal Science, Technology, Engineering, Mathematics (STEM) learning.


The deliverables include:


An outreach program in Alaska that will visit 33 remote native villages;
A 2,000 square foot traveling exhibition on snow produced by the Oregon Museum of Science and Industry (OMSI) and exhibited at two additional museums during the life of the award;
Learning research, which will examine how the wide variation of cultural relationships to snow impacts learning in museum exhibitions. Each of these components will be evaluated over the course of the project. The travelling exhibition will tour to three museums per year for eight years, with an anticipated cumulative audience of over one million.


The focus on snow will highlight a fascinating yet under-appreciated part of the Earth system. The project aims to educate the public about snow and to produce a more informed and thoughtful public in the face of potential expensive and difficult snow-related societal decisions. Through informative displays, graphics, models, and other material, the project will engage traditionally under-served communities (at Native/remote villages) in Alaska, where a strong cultural connection to snow exists, as well as communities across the U.S. where the connection to snow can range from strong to weak. Across this cultural gradient, the project will explore through oral interviews and surveys the public response to various types and designs of informal science learning (ISL) displays, attempting to isolate and control for the effect of cultural vs. individual response to the materials. Informal learning theory specifies using front-end exploration of individual visitor-content relationships to guide exhibit design. This project's research goal expands that approach to include the effects of cultural engagement with a topic to develop more general tools to guide and improve the design process. The project is led by the University of Alaska Fairbanks (UAF) in collaboration with OMSI researchers from the COSI (Center of Science and Industry), Center for Research and Evaluation (CRE), and evaluators at the Goldstream Group. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Victoria Coats Matthew Sturm Deborah Wasserman
resource research Public Programs
Public engagement with science (PES) is about dialogue between scientific and technological experts and public audiences about societal questions that science can inform but not answer. In making decisions about these kinds of societal questions, social values and personal experience play roles equal to or greater than the one played by science. Rather than focusing exclusively on science itself, PES focuses on discussing problems that communities view as worth solving; the information society needs and wants from scientists; the potential risks, benefits, and consequences of new technologies
DATE:
resource research Public Programs
As part of ongoing efforts to support a diverse and robust engineering workforce and ensure that children and adults from all communities have the engineering and design thinking skills to succeed in a science, technology, engineering, and mathematics (STEM)-rich world, identity has become a growing focus of research and education efforts. In order to advance our understanding of engineering-related identity negotiation within informal STEM education contexts, we conducted an in-depth, qualitative investigation of six adolescent girls participating in an afterschool engineering education
DATE:
resource research Media and Technology
Due to the dynamic nature of many fields of science, most adults will acquire the majority of their science information after they leave formal schooling. Future public-policy decisions will require adults to have an understanding of the practice and nature of modern science and technology. A major source for continued learning is science media and journalism, which has the capacity to provoke and increase science curiosity and the value of science. In partnership with Jacobs Media Strategies, the Cultural Cognition Project at Yale Law School and Texas Tech University, KQED, the NPR and PBS
DATE:
TEAM MEMBERS: Sue Ellen McCann Fred Jacobs Jason Hollins Asheley Landrum Dan Kahan
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Innovations in Development project will research and produce science media based on the role that interest, motivations, identify, and values play in engaging diverse, millennial audiences in a dynamic media environment. Using a design-based research approach the project team will develop Millennial Science Media Engagement Profiles (a set of categories describing different audience types who engage with science media in different ways). It will design and test science media content (text, audio, graphics, video), placement and platform use for millennials; and make conclusions around science media storytelling and outreach tactics that spark interest and engagement, the precursors to learning. Broader impacts include contributing significant new knowledge about millennials interest and engagement in science while they are at a stage in life making critical career decisions. It will also provide a model for other science media producers providing new protocols for creating targeted digital media for this specific audience. And further impacts include reaching a large national audience through social media. The project is a collaboration between KQED and researchers at Texas Tech.

The research will focus on the distinctive experience and interest of "millennial" science consumers. It builds on a previously funded national survey and series of focus groups with millennials looking at their science media preferences versus other generations. With these survey results this project will build profiles of millennial audiences based on two factors: level of science curiosity and level of science media engagement. The researchers will use a previously validated Science Curiosity Scale. The Millennial Profiles will be validated in two ways: through performance-based survey questions and through internet audience behavior analysis using existing digital analysis tools. KQED will produce different science media content and send it to certain groups conducting A/B testing to validate profiles online. The profile assumptions will continue to be tested until the team can effectively predict the kinds of science content that different profile groups prefer. The research will use a study protocol used in other domains to bridge the gap between lab and real-world settings. The protocol involves four steps: initial hypothesis development; ante experimental simulation; real-world communication; and ex post experimental simulations. Following the profile validation, the protocol will be used to test the efficacy of new KQED Science content, testing the variables that contribute to millennial engagement.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sue Ellen McCann Sevda Eris Jennifer Brady Asheley Landrum
resource evaluation Public Programs
This document contains the following Appendices that provide information for the I/CaLL Community Science Learning study. Appendix A: StreamLines Events Appendix B: StreamLines Events Survey Instrument Appendix C: Art + Science Brainstorm Coding Themes Appendix D: Art + Science Brainstorm Flyer
DATE:
TEAM MEMBERS: John Fraser Nezam Ardalan
resource research Public Programs
I/CaLL is a four-year project that explores art as conduits for informal science learning on a citywide scale. The project attempts to transform the city of Indianapolis into an informal science-learning museum through the use of sculpture, dance, music, and poetry as educational tools in creating awareness and understanding of the city’s waterways. Specifically, I/CaLL addresses five sites located near and around waterways in impoverished or underserved communities, where art interventions created by artists in collaboration with scientists address topics around water sustainability
DATE:
TEAM MEMBERS: John Fraser Nezam Ardalan Christina Shane-Simpson
resource evaluation Public Programs
This set of appendices represent all research instruments related to study presented in the I/CaLL Art Experiences and Advancing Science Literacy report (NewKnowledge Publication #NSF.097.115.07). Appendix A: Installation Site Intercept Interview Instrument Appendix B: Artists-Scientists Walk & Talks Instrument Appendix C: Post-Performance Event Survey Instrument Note that researchers did not use an instrument for the fourth aspect of the study, the post-performance event reflection sessions. Instead, they allowed the discussions to be directed by the reflection participants.
DATE:
TEAM MEMBERS: John Fraser Rebecca Joy Norlander Sophie Swanson Nezam Ardalan Kate Flinner Joanna Laursen Brucker Nicole LaMarca
resource research Public Programs
This report describes the results from an exploratory study of how artists approached collaboration with earth scientists to foster the public’s science learning and engagement with a city’s waterways. Data from phone interviews, surveys, and reflection on the artwork produced for this collaboration were compared with observations of roundtable discussions with community-based artists and scientists grappling with these ideas in a dialogue format. The researchers found that personal connections with the waterway sites and professional interest in and experience with art–science
DATE:
TEAM MEMBERS: John Fraser Nezam Ardalan Kate Flinner Su-Jen Roberts
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The uses of technologies in emergency management and public safety are emerging rapidly, but it could take years for school STEM curricula to catch up with the technologies that are already being deployed in the field. Informal learning environments, such as Teen Science Cafés, provide a compelling venue for youth learning about rapidly-developing STEM fields such as technology. The floods and devastation caused by Hurricane Harvey provide a timely learning opportunity for them. This project, in addition to developing new materials for learning about technologies, will provide much-needed baseline research on teens' understanding of technology, technology careers, and emergency preparedness. Leveraging the robust platform of the NSF-funded Teen Science Café, the Maine Mathematics and Science Alliance will build upon its existing partnership with Science Education Solutions to develop and implement a package of educational activities, tools, and resources for a Teen Science Café that is focused on community flood events and response, using Hurricane Harvey as a model and case study. The materials will focus on advances in sensor technology, data visualization, social media, and other mobile communication apps used to detect, monitor and respond to flooding and natural disasters. The package of materials will be embraced by 20 sites in Maine. The goal is to engage at least 600 youth in themed Cafés focusing on how technology was used to respond to Harvey and is being used to manage and respond to flooding more generally. An important related goal is to conduct baseline research on what teens currently know about the flood-related technologies, as well as what they learn about it from this experience derived from recent floods in Texas, Florida, and the Caribbean islands.

A research goal of our work was to collect baseline information on teens’ level of knowledge about the role of technology in responding to a variety of natural disasters. To our knowledge, the field has not developed measures of knowledge of this increasingly important domain. We developed a quick and easy-to-administer 10-item multiple-choice measure, which we presented as a “trivia game” to be done sometime during the 90-minute Café. We did not track pre- to post-café changes in knowledge, because the Cafés emphasized very different pieces of technology as well as different types of natural disasters. Rather, we wished to establish a starting point, so that other researchers who are engaged in ERT efforts with teens have both an instrument and baseline data to use in their work.

A sample of 170 youth completed the questionnaire. The average correct response rate was 4.2 out of 10, only slightly higher than the chance of guessing correctly (3 out of 10). This suggests teens have limited baseline knowledge of Emergency Response Technology and our Cafés therefore served an important purpose given this lack of knowledge. Indeed, for half of the questions at least one incorrect answer was selected more often than the correct answer! Note that there were no statistically significant correlations between age and gender and rates of correct answers.

Three things are clear from our work: 1) Youth need and want to know about the vital roles they can play by learning to use technology in the face of natural disasters; 2) Teens currently know little about the uses of technology in mitigating or responding to disasters; and 3) Teen Science Cafés provide a timely and relatively simple way of sparking interest in this topic. The project showed that it is possible to empower youth to become involved, shape their futures, and care for their communities in the face of disasters. We plan to continue to expand the theme of Emergency Response Technology within the Teen Science Café Network. Reaching teens with proactive messages about their own agency in natural disasters is imperative and attainable through Teen Science Cafés.
DATE: -
TEAM MEMBERS: Jan Mokros
resource project Exhibitions
Engagement is the cornerstone of learning in informal science education. During free-choice learning in museums and science centers, visitor engagement shapes how learners interact with exhibits, navigate through exhibit spaces, and form attitudes, interests, and understanding of science. Recent advances in multimodal learning analytics are creating novel opportunities for expanding the range and richness of measures of visitor engagement in free-choice settings. In particular, multimodal learning analytics offer significant potential for integrating multiple data sources to devise a composite picture of visitors' cognitive, affective, and behavioral engagement. The project will center on providing a rich empirical account of meaningful visitor engagement with interactive tabletop science exhibits among individual visitors and small groups, as well as uncovering broader tidal patterns in visitor engagement that unfold across exhibit spaces. A key objective of the project is creating models and practitioner-focused learning analytic tools that will inform the best practices of exhibit designers and museum educators. This project is funded by the Advancing Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, AISL funds research and innovative approaches and resources for use in a variety of settings. The research team will conduct data-rich investigations of visitors' learning experiences with multimodal learning analytics that fuse the rich multichannel data streams produced by fully-instrumented exhibit spaces with the data-driven modeling functionalities afforded by recent advances in machine learning and educational data mining. The research team will conduct a series of visitor studies of naturalistic engagement in solo, dyad, and group interactions as visitors explore interactive tabletop science exhibits. The studies will utilize eye trackers to capture visitors' moment-to-moment attention, facial expression analysis and quantitative field observations to track visitors' emotional states, trace logs generated by exhibit software, as well as motion-tracking sensors and coded video recordings to capture visitors' behavioral interactions. The studies will also use conversation recordings and pre-post assessment measures to capture visitors' science understanding and inquiry processes. With these multimodal data streams as training data, the research team will use probabilistic and neural machine learning techniques to devise learning analytic models of visitor engagement. The project will be conducted by a partnership between North Carolina State University and the North Carolina Museum of Natural Sciences. The research team will 1) design a data-rich multimodal visitor study methodology, 2) create the Visitor Informatics Platform, a suite of open source software tools for multimodal visitor analytics, and 3) launch the Multimodal Visitor Data Warehouse, a curated visitor experience data archive. Together, the multimodal visitor study methodology, the Visitor Informatics Platform, and the Multimodal Visitor Data Warehouse will enable researchers and practitioners in the informal science education community to utilize multimodal learning analytics in their own informal learning environments. It is anticipated that the project will advance the field of informal STEM learning by extending and enriching measures of meaningful visitor engagement, expanding the evidence base for visitor experience design principles, and providing learning analytic tools to support museum educators. By enhancing understanding of the cognitive, affective, and behavioral dynamics underlying visitor experiences in science museums, informal science educators will be well-positioned to design learning experiences that are more effective and engaging. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: James Lester James Minogue Jonathan Rowe North Carolina Museum of Natural Sciences
resource research Public Programs
Scientists are increasingly being called upon to play a more prominent role in the interface of science and society by contributing to science literacy in ways that support two-way exchanges with the public. However, many remain reluctant to participate in public engagement activities in part because they feel they lack relevant skills and experience. We surveyed scientists trained on engagement through a nationwide program called Portal to the Public and examined how participation in the program may have influenced their self-efficacy, commitment and attitudes about outreach, and perceived
DATE: