The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
In 2006 the Coalition for Science After School, under a subcontract from SEDL as part of their U.S. Department of Education grant, began an investigation of the potential of out-of-school time programs as a network of early support for advanced STEM coursework, including Advanced Placement courses and their prerequisites. This undertaking responded to research findings that math and science are "critical filters," that continuation in STEM education and careers depends on opting for sequential and rigorous courses, and that young people need messages and preparation that encouraged them to
DATE:
TEAM MEMBERS:
The Coalition for Science After SchoolYolanda S. George
This review conducted by the National Institute on Out-of-School Time (NIOST) explores the current discussion and research findings on STEM (Science, Technology, Engineering, and Math) in out-of-school time and reflects on the ways the INSPIRE program model (see Appendix A) incorporates research-based practice in implementing STEM education experiences in out-of-school time. The purpose of the literature review and analysis project is to inform the INSPIRE program managers during the planning and implementation stage of INSPIRE.
The Out-of-School Time Resource Center (OSTRC) conducted literature searches of the UPENN library databases including PsycInfo, ERIC and Professional Development Collection for articles pertaining to promising practices in professional development and evaluating professional development. In addition to searching the library database, we conducted Google searches. We used various search terms and key words including the following: professional development and out-of-school time; professional development and program quality; promising practices and out of school time; professional development
Research in the out-of-school time (OST) field confirms that there is a strong connection between professional development (PD) for staff and positive outcomes for youth. According to Heather Weiss, Founder and Director of the Harvard Family Research Project (HFRP), professional development for those who work with children and youth is fraught with challenges and ripe with opportunity and specifically, the opportunity to increase staff quality, which experts agree is critical to positive experiences for children and youth (Weiss, 2005/2006). However, as Thomas Guskey (1998) states, "For many
DATE:
TEAM MEMBERS:
University of PennsylvaniaNancy Peter
Despite robust research literature on the need for and benefits of summer learning programs, surprisingly few federal policies target summer specifically as a time to support healthy youth development and advance learning. Providing appropriate childcare and enriching activities during the summer has traditionally been viewed as the private responsibility of families. While this arrangement may be sufficient for wealthier children, who typically access a wide variety of resources that help them grow over the summer, poorer families often struggle to access such basic resources as healthy meals
DATE:
TEAM MEMBERS:
Ron FairchildBrenda McLaughlinBrendan Costigan
The common but under-researched practice of hiring participants as afterschool program staff presents unique challenges but has clear advantages for programs, participant staff members, and communities.
Arizona State University (ASU) in collaboration with Arizona Science Center, Boeing, Intel, Microchip, Motorola, Salt River Project, AZ Foundation for Resource Education, AZ Game & Fish Department, US Partnership for the Decade of Education for Sustainable Development, Mesa Public Schools, and Boys & Girls Clubs of the East Valley, offer a three-year extracurricular project resulting in IT/STEM-related learning outcomes for 96 participants in grades 7, 8, and 9. The project targets and engages female and minority youth traditionally under-represented in IT/STEM fields in multi-year out-of-school technological design and problem solving experiences. These include summer internships/externships and university research in the science center and industrial settings where participants develop socially responsible solutions for challenging real world problems. The program includes cognitive apprenticeships with diverse mentors, opportunities to practice workplace skills such as leadership, teamwork, time management, creativity and reporting, and use of technological tools to gather and analyze complex data sets. Participants simulate desert tortoise behaviors, research and develop designs to mitigate the urban heat island, build small-scale renewable energy resources, design autonomous rovers capable of navigating Mars-like terrain, and develop a model habitat for humans to live on Mars. Together with their families participants gain first-hand knowledge of IT/STEM career and educational pathways. In addition to youth outcomes, the adults associated with this project are better prepared to positively influence IT/STEM learning experiences for under-represented youth. The evaluation measures participant content knowledge, attitudes and interest in IT/STEM subjects, workplace skills and intentions to pursue IT/STEM educational and career pathways to understand participant reactions, learning, transfer and results. Informal curricula developed through this project, field-tested with youth at Boys & Girls Clubs and youth at Arizona Science Center will be available on the project website.
DATE:
-
TEAM MEMBERS:
Tirupalavanam GaneshMonica ElserStephen KrauseDale BakerSharon Robinson-Kurplus
The Oregon Museum of Science and Industry (OMSI), in partnership with the Native American Youth Association (NAYA), Intel Oregon, the National Park Service, and National Oceanic and Atmospheric Administration, will the expand the existing Salmon Camp Research Team (SCRT), a youth-based ITEST project targeting Native American and Alaskan Native youth in middle and high school. SCRT uses natural resource management as a theme to integrate science and technology and provide students with opportunities to explore local ecosystems, access traditional American Indian/Native Alaskan knowledge, and work closely with researchers and natural resource professionals. The project is designed to spark and sustain the interest of youth in STEM and IT careers, provide opportunities to use IT to solve real world problems, and promote an understanding of the complementary nature of western and native science. The original SCRT project included summer residential programs, spring field experiences, weekend enrichment sessions, parental involvement, college preparatory support, and internship placement. The renewal will increase the IT content for participants by adding an afterschool component, provide opportunities for greater parental involvement, enhance the project website, and develop a SCRT toolkit. Students are exposed to a variety of technologies and software including Trimble GeoExplorer XM GPS units, PDAs with Bluetooth GPS antennae, YSI Multi-Probe Water Quality Field Meters, GPS Pathfinder, ArcMap, ArcPad, Terrasync, and FishXing. It is anticipated that this project will serve 500 students in Oregon, Washington, California, Idaho, Montana, and Alaska, proving them with over 132 contact hours.
DATE:
-
TEAM MEMBERS:
Travis Southworth-NeumeyerSteven TritzDaniel CalvertNicole Croft
This proposal, the "Dan River Information Technology Academy (DRITA)," is a request for a three-year program for high school students from underserved populations who are interested in pursuing IT or STEM careers. The overall goal of DRITA is to provide opportunities for promising African American or Hispanic youth to (1) develop solid Information Technology skills and (2) acquire the background and encouragement needed to enable them to pursue higher education in STEM fields, including IT itself and other fields in which advanced IT knowledge is needed. A total of 96 students will be recruited over the course of the three years. Each DRITA participant will receive 500 hours of project-based content. The project includes both school-year modules and a major summer component. Delivery components will include a basic IT skills orientation; content courses in areas such as animation, virtual environment modeling, advanced networking, programming, GIS, robotics, and gaming design; externships; a professional conference/trade show "simulation," and college/career counseling. Parent involvement is an integral part of the program and includes opportunities for parents to learn from participants, joint college visits, and information sessions and individual assistance in the college admission process.
DATE:
-
TEAM MEMBERS:
Julie BrownElizabeth NilsenMaurice Ferrell
Temple University's "Sisters in Science in the Community (SISCOM)" is a constructivist-based, inclusive youth/community project targeting underrepresented urban middle and high school girls in grades 6-10 and their families; it supports inclusion of girls with disabilities. It engages girls and their parents in hands-on, inquiry-based sports science in after-school, Saturday, and summer programs co-hosted by community-based organizations and Temple University. Girls will also be engaged in student-centered research projects guided by female scientists. With regard to intellectual merit, SISCOM is based on previous research done by Temple on methods for engaging girls and their parents in STEM activities. The infrastructure of research and practices in education will be facilitated through the sharing of information between the network of partners and the national community of formal and informal educators
The "Environmental Science Information Technology Activities (ESITA)" based at the Lawrence Hall of Science (LHS) at UC-Berkeley is a three-year, youth-based proposal that seeks to engage 144 inner-city ninth and tenth graders in learning experiences involving environmental science and information technology. The goal of the project is to develop, field-test, and disseminate an effective student-centered, project-based model for increasing understanding and interest in information technology. Program components included an afterschool program, summer enrichment and an internship program. An extensive partnership involving community based agencies, environmental science organizations, a local high school and industry support the project by serving as host sites for the afterschool program and internship component. Student participation in project-based, IT-dependent research activities related to environmental science will occur year round. Students will research air and water quality in their local communities and study attitudes toward -- and use of -- information technology among their peers. The focus of the research activities is based on the results of a students-needs assessment. Students participate in the program over a two-year period and are expected to receive at least 240 total contact hours. The afterschool program serves as the project's principal mechanism for content delivery. The five-month afterschool program consists of inquiry-based mini-courses on the following topics: Information Technology tools and concepts, earth and physical science, data compilation and modeling, and publication of research results. The summer enrichment component encompasses a series of workshops at LHS; excursions to IT-related exhibits, environmental facilities, and IT-based companies; and an annual student robotics fair. During the second year of program participation students will complete 12-month internships to support the application of concepts and skills learned the first year. The LHS Student Geoscience Research Opportunities program will serve as a model host site for the program. Stipends are provided throughout the program to encourage student participation and retention.