Skip to main content

Community Repository Search Results

resource project Public Programs
General Summary

This project seeks to prepare female Hispanic students for leadership in the STEM workforce. The project seeks to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky workforce and educational pipeline resulting in matriculation to and graduation from undergraduate STEM programs. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce. To accomplish these goals, the PIs will: (1) work with partners to identify, recruit, and screen bright, energetic Hispanic females in their freshman year of high school who show promise and interest in STEM disciplines; (2) engage selected students and their families in formal and informal STEM learning both throughout the school year and during summer residential experiences to enable the students to further develop and clarify their STEM calling; (3)prepare the students to matriculate to undergraduate college; (4) provide program participants with full-tuition scholarships to ensure undergraduate education is attainable; and (5) at our institution and partner colleges, provide dedicated advisors and mentors and cohort activities to ensure undergraduate persistence and success.

Technical Summary

The PIs seek to prepare female Hispanic students for leadership in the STEM workforce. To compete in the global economy, maintain national security, and meet serious environmental challenges, more skilled graduates are needed to fill STEM jobs. An untapped source of talent exists in those populations that continue to be underrepresented in STEM fields, including women and people of color. This work will help to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky pipeline resulting in matriculation to and graduation from undergraduate STEM education. The work builds on research that shows that mentored research opportunities and peer support and interaction improves persistence in female students. It also builds on regional models of collective impact whereby a variety of corporate, nonprofit, and foundation organizations successfully join together for large-impact projects. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce.
DATE: -
TEAM MEMBERS: April Marchetti Charles English Rebecca Michelsen Rachele Dominguez Laurie Massery
resource project Public Programs
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.

The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE: -
TEAM MEMBERS: Jumoke Ladeji-Osias Cindy Ziker Geneva Haertel Kamal Ali Ayanna Gill Derrick Gilmore Clay Gloster
resource research Media and Technology
Sustainability science, as described by the PNAS website, is “…an emerging field of research dealing with the interactions between natural and social systems, and with how those interactions affect the challenge of sustainability: meeting the needs of present and future generations while substantially reducing poverty and conserving the planet's life support systems.” Over the past 7 y, PNAS has published over 300 papers in its unique section on sustainability science and has received and reviewed submissions for many hundreds more. What kind of a science is sustainability science?
DATE:
TEAM MEMBERS: Robert Kates
resource research Professional Development, Conferences, and Networks
The National Academies’ Science and Technology for Sustainability Program (STS) in the division of Policy and Global Affairs was established to encourage the use of science and technology to achieve long-term sustainable development. The goal of the STS program is to contribute to sustainable improvements in human well-being by creating and strengthening the strategic connections between scientific research, technological development, and decision-making. The program concentrates on activities with the following attributes: • Cross-cutting in nature, requiring expertise from multiple
DATE:
TEAM MEMBERS: National Academies of Sciences, Engineering, and Medicine
resource project Public Programs
This is a two-year "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot targeting high school students in the Hudson Valley, including the New York Metropolitan Area. It will support a network of institutional partners that are committed to providing internship and mentoring opportunities to youths interested in authentic research projects. The proposed work will build on a current research immersion program--the Secondary School Field Research Program (SSFRP) at Columbia University's Lamont-Doherty Earth Observatory. SSFRP serves high school students, mainly from underrepresented and underserved communities, who work with college students, science teachers, and researchers around a specific science problem. Over the past decade, the program has had demonstrable impact, including attendance to college, and students' selection of STEM majors. Tracking data indicates that retention rates of its alumni in four-year colleges are well above the norm, and a significant fraction of early participants are now in graduate programs in science or engineering. The program has surpassed all expectations in its effectiveness at engaging underserved populations in science and promoting entry into college, recruitment into STEM majors, and retention through undergraduate and into graduate studies. Hence, the project's overall goal will be to extend and adapt the research-immersive summer internship model through an alliance with peer research institutions, school districts and networks, public land and resource management agencies, private funding agencies, informal educational institutions, and experts in pedagogical modeling, metrics, and evaluation. Focused on earth and environmental sciences, the summer and year-round mentoring model will allow high school students to work in research teams led by college students and teachers under the direction of research scientists. The mentoring model will be multilayered, with peer, near-peer, and researcher-student relationships interweaving throughout the learning process.

The project has formulated a set of testable explanatory hypotheses: (1) Beyond specific subject knowledge, success rests on increased student engagement in a community of practice, with near-peer mentors, teachers, and scientists in the context of scientific research; (2) The intensity of engagement also shifts the students' vision of their future to include higher education, and specifically to imagine and move toward a STEM career; and (3) Early engagement, before students attend college, is critical because high school is where students form patterns of engagement and capacities related to science learning. Thus, the immediate goal of the two-year plan will be to create approximately 11 research internship programs focused on earth and environmental sciences, and to build the networks for growth through engagement with a wider community of educational partners. The main focus of this approach will be removing barriers between high school students and STEM organizations, and adapting the current mentoring model at Columbia University to the specific cultures of other research groups and internship programs throughout the lower Hudson Valley. The team has already assembled a diverse set of partners committed to broadening participation in STEM using a collective impact approach to early engagement in project-based learning. Research partners will provide the mentors, research projects, and laboratory facilities. The educational network partners will provide access for students, particularly those from under-resourced communities to participate, as well as participation opportunities for interested teachers. Informal learning organizations will provide access to field and research sites, along with research dissemination opportunities. In Year 1, the project will conduct a series of development workshops for partners already in place and foster the formation of new partnership clusters according to shared interest, complementary resources and geographic proximity. The workshops will provide a forum for partners to learn about each other's visions, values, challenges, and existing structures, while working through theoretical and practical issues related to STEM engagement for young investigators. In Year 2, the project will target the implementation of the internship programs at various sites according to the agreed-upon goals, program model, research projects, recruitment and retention strategy, staff training, data collection, and evaluation plans. An external evaluator will address both the formative and summative evaluation of the effort directed toward examining the three project's hypotheses concerning the educational impacts of scientific research on student engagement, extent of the immersion, and overall effectiveness of the programs.
DATE: -
TEAM MEMBERS: Robert Newton Luo Cassie Xu Margie Turrin Einat Lev Matthew Palmer
resource research Media and Technology
Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an
DATE:
TEAM MEMBERS: National Academies of Sciences, Engineering, and Medicine
resource research Professional Development, Conferences, and Networks
The emergence and recognition of outreach and engagement staff and non-tenure track faculty in higher education literature as key figures in the success of university outreach and community engagement are welcome developments for these practitioners. This article describes the perceptions of outreach and engagement staff at large, public research universities with decentralized engagement initiatives. The authors describe efforts to organize outreach and community engagement staff to create supportive networks, improve practice, provide professional development opportunities, and advocate for
DATE:
TEAM MEMBERS: Susan Harden Katherine Loving
resource research Media and Technology
Factors that influence reception and use of information are represented in this koru model of science communication using the metaphor of a growing plant. Identity is central to this model, determining whether an individual attends to information, how it is used and whether access to it results in increased awareness, knowledge or understanding, changed attitudes or behaviour. In this koru model, facts are represented as nutrients in the soil; the matrix influences their availability. Communication involves reorganisation of facts into information, available via channels represented as roots
DATE:
TEAM MEMBERS: Nancy Longnecker
resource research Informal/Formal Connections
This paper contains an overview of the programmes currently existing in Latin America to train science communicators. For such purpose, only postgraduate courses held regularly were considered in the study. Twenty-two programmes meeting such requirement were identified in five countries, 65% of which were in fact established over the past ten years. They present a lot of diversity in terms of admittance requirements, goals, contents, approaches, duration and graduation requirements. However, all of them share the same effort, aiming to offer specific contents in the area of science
DATE:
TEAM MEMBERS: Luisa Massarani Elaine Reynoso Sandra Murrielo Ayelen Castillo
resource research Public Programs
According to the Harvard Family Research Project (2010), schools need collaborative partners to help children and youth thrive. For over a decade, afterschool programs have been positioning themselves as viable partners. After all, afterschool programs challenge students’ thinking, teach collaboration, and help children and youth find their passion.
DATE:
TEAM MEMBERS: Kenneth Anthony Joseph Morra
resource project Informal/Formal Connections
This project was submitted in response to EHR Core Research (ECR) program announcement NSF 15-509. The ECR program of fundamental research in STEM education provides funding in critical research areas that are essential, broad and enduring. EHR seeks proposals that will help synthesize, build and/or expand research foundations in the following focal areas: STEM learning, STEM learning environments, STEM workforce development, and broadening participation in STEM. The ECR program is distinguished by its emphasis on the accumulation of robust evidence to inform efforts to (a) understand, (b) build theory to explain, and (c) suggest interventions (and innovations) to address persistent challenges in STEM interest, education, learning, and participation.

In 2015, average mathematics scores on the National Assessment of Educational Progress (NAEP) declined in fourth and eighth grades, the first declines in mathematics at these grade levels since 1990. Declines in U.S. mathematics performance has important implications for overall STEM education as well as STEM workforce and international competitiveness. Researchers at Rutgers University will conduct an analysis to isolate the cause of the mathematics decline by investigating the dimensionality of the NAEP assessment, state-level outcomes, and demographic trends.

The team will use multilevel item response theory modeling techniques to investigate the declines by examining the factor structures to determine dimensionality across years. Researchers will examine subscores corresponding to each dimension of the factor structure at the state and national levels. In addition, subscores will be examined for trends in individual states and jurisdictions. Potentially, the analyses will allow for examination of factors related to state standards adoptions, demographic shifts, and participation rates.
DATE: -
TEAM MEMBERS: Gregory Camilli
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard