This research illustrates the efficacy of a new approach for collecting and analyzing family conversational data at museums and other informal settings. This article offers a detailed examination of a small data set (three families) that informs a larger body of work that focuses on conversation as methodology. The dialogic content of this work centers on biological themes, specifically adaptation. The biological principle becomes visible when families talk about survival strategies such as breeding or protection from predators. These themes arise from both the family members and the museum
Suitable for planners, educationalists and environmentalists, this book introduces the theory and the practice of children's participation, and its importance for developing democracy and sustainable communities.
Women have made tremendous progress in education and the workplace during the past 50 years. Even in historically male fields such as business, law, and medicine, women have made impressive gains. In scientific areas, however, women’s educational gains have been less dramatic, and their progress in the workplace still slower. In an era when women are increasingly prominent in medicine, law, and business, why are so few women becoming scientists and engineers? This study tackles this puzzling question and presents a picture of what we know—and what is still to be understood—about girls and
DATE:
TEAM MEMBERS:
Catherine HillChristianne CorbettAndresse St. Rose
The goal of this project is to advance STEM education in Hawaii by creating a series of educational products, based on NASA Earth Systems Science, for students (grades 3-5) and general public. Bishop Museum (Honolulu HI) is the lead institution. NASA Goddard Space Flight Center is the primary NASA center involved in the project. Partners include Hawaii Department of Education and a volunteer advisory board. The evaluation team includes Doris Ash Associates (UC Santa Cruz) and Wendy Meluch of Visitor Studies Inc. Key to this project: the NASA STEM Cohort, a team of six current classroom teachers whom the Museum will hire. The cohort will not only develop curricula on NASA earth science systems but also provide guidance to Bishop Museum on creating museum educational programming that best meets the needs of teachers and students. The overall goal of Celestial Islands is to advance STEM education in Hawaii through the use of NASA Earth Science Systems content. Products include: 1) combined digital planetarium/Science on a Sphere® program; 2) traveling version of that program, using a digital planetarium and Magic Planet; 3) curricula; 4) new exhibit at Bishop Museum on NASA ESS; 5) 24 teacher workshops to distribute curricula; 6) 12 community science events. The project's target audience is teachers and students in grades 3-5. Secondary audiences include families and other members of the general public. A total of 545,000 people will be served, including at least 44,000 students.
This is a Broad Implementation proposal. Our goal is to create a vibrant, sustained community of practice around the established Café Scientifique New Mexico model for engaging high school teens in science, technology, engineering and math; scale-up will be accomplished via a national network of committed partners. The adult Cafe Scientifique model for engaging citizens in science has proven very effective and has been implemented widely. The interaction in a social setting with a scientist-presenter around a hot science topic is the key to the model’s success. With ISE funding, the model has been adapted by Science Education Solutions for the high school teen audience. Cafe Scientifique New Mexico, now starting its fifth year, has had documented success in providing teens with increased STEM literacy and a more realistic picture of scientists as real people leading interesting lives. Teens come to better understand the nature of science and are more likely to see the relevance of science to their lives. Scientists express strong satisfaction with the nature of our coaching and the resulting quality of their science communication. The program has been continually evaluated and improved, and is now ready for broad implementation. Intellectual Merit: Teenagers are the adult citizens and workforce of tomorrow. Teens are reaching a critical life juncture and are making choices that affect their future life style, life-long learning behaviors, and careers. Yet they are increasingly dropping out of the STEM pipeline in school. Even teens interested in STEM often know little about science and engineering careers and the nature of scientific research. Teen Cafés can play an important role in addressing these challenges. We have two major objectives: 1. Implement the Café Scientifique model of Teen Cafés in a national network of sites committed to adopting and adapting the program and validating its impacts with diverse audiences; and 2. Create a vibrant and sustainable community of practice comprised of ISE and STEM professionals interested in engaging teens in STEM through Teen Cafés. We have formed a core network of six initial partners: Southern Illinois University Edwardsville, Center for STEM Research, Education, and Outreach; The Florida Teen SciCafé Partnership; North Carolina Museum of Natural Sciences, Raleigh; Science Discovery, University of Colorado; The Pacific Science Center in Seattle; and The Missouri AfterSchool Network (MASN) – Project LIFTOF. We will add two more core partners in Year 3. The core partners will join the Teen Cafe Network in a staged fashion in years 1 - 3. Each will reach sustainability over a three-year funding period. Each node has a local area network of partners consisting of organizations that will host local Cafes; scientific organizations with potential presenters; schools and other organizations for recruiting teens; and entities capable of contributing to financial sustainability. The network will provide a structure for a dynamic, growing, and sustainable community of practice to implement the Teen Café model, in which high school teens will gain skills in scientific discourse, thought, and exploration. STEM professionals will gain improved skills for communicating with public audiences and a new perspective on their research from a broader societal perspective. ISE professionals will gain capacity to adapt, implement, test, and further disseminate the Teen Café model and increased capability for preparing STEM experts to communicate effectively with teen audiences, along with tools, resources, and expertise to help them do so. Science Education Solutions will manage the project and provide the resources to support the community of practice, while continuing Cafe Scientifique New Mexico as a ninth network node. We will stimulate intensive ongoing communication of lessons learned across the network as partners start up their Cafe programs; external observers will be able to watch the program unfold. Broader Impacts: We will build capacity for serving teens and effective communication of science in the broad ISE and STEM communities by encouraging and nurturing others wishing to start a Cafe program and join the network. We have partnered with 10 large science and science education organizations, each with its own extensive network, which will allow us to further propagate the Teen Cafe Network. They are: National Ecological Observatory Network (NEON). Nanoscale Informal Science Education Network (NISE Net), The American Institute of Physics (AIP), Science Cafés.org (to include NOVA), Science Festival Alliance, Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), Informalscience.org, Project Liftoff: Elevating Science Afterschool, ITEST Learning Resource Center, and The Center for Multiscale Modeling of Atmospheric Processes (CMMAP). Each partner will also target underserved and diverse teen audiences for their programs.
One of the most recent additions to the range of Immersive Virtual Environments has been the digital fulldome. However, not much empirical research has been conducted to explore its potential and benefits over other types of presentation formats. In this review we provide a framework within which to examine the properties of fulldome environments and compare them to those of other existing immersive digital environments. We review the state-of-the-art of virtual reality technology, and then survey core areas of psychology relevant to experiences in the fulldome, including visual perception
DATE:
TEAM MEMBERS:
Simone SchnallCraig HedgeRuth Weaver
The article focuses on the creation and development of an interactive science museum by middle level students as part of informal science education in the U.S. The said project which primarily targets fifth-grade students aimed at maximizing the active engagement of a learner during his or her experience. It also promotes the minimization of lecture-laden instruction while maximizing an experience-based learning system. The project which is adopted in the late part of 2006 help students to review and synthesize information, collaborate with peers, and specialize science topics.
Over the last decade, hundreds of planetariums worldwide have adopted digital “fulldome” projection as their primary projection and presentation medium. This trend has far-reaching potential for science centers. Digital planetarium capabilities extend educational and cultural programming far beyond night-sky astronomy. These “digital domes” are, in essence, immersive visualization environments capable of supporting art and live performances and reproducing archeological sites, as well as journeying audiences through the local cluster of galaxies. Their real-time and rapid-update capabilities
This paper advocates for place-based education to guide research and design for mobile computers used in outdoor informal environments (e.g., backyards, nature centers and parks). By bringing together research on place-based education with research on location awareness, we developed three design guidelines to support learners to develop robust science-related understandings within local communities. The three empirically- derived design guidelines are: (1) Facilitate participation in disciplinary conversations and practices within personally-relevant places, (2) Amplifying observations to see
Viewers believe they are learning from giant screen films. But are they really learning, and what are they learning? This article reviews how evaluators look for learning impact and what evaluators have discovered aboutl learning from giant screen films and their adjunct materials.
This study documents the views of effective professional development held by eight professional development (PD) providers, representing four informal science institutions (ISI) and four programs within two institutions of higher education (IHE) in a large Midwestern metropolitan area in the United States. This study finds that, while the reported learning and outcome agendas of the providers were similar across the board, a dichotomy in approach to PD emerged according to the type of institution. This dichotomy between ISI and IHE was persistent across thematic categories: (1) language use
DATE:
TEAM MEMBERS:
Tasmin Astor-JackEllen McCalliePhyllis Balcerzak
In responding to the research on conceptual change, this article attempts to make two points. First, scientific concepts are not possessed by individuals; rather, they are part of a culture’s resources, which individuals learn to use for their own or for group purposes. Second, particular concepts are most effectively mastered when the learner is deeply engaged in solving a problem for which they function as effective semiotic tools in achieving a solution. On these grounds, it is argued that the mastering of scientific concepts is best achieved through learning to use them in motivated