Data science is ever-present in modern life. The need to learn with and about data science is becoming increasingly important in a world where the quantity of data is constantly growing, where one’s own data are often being harvested and marketed, where data science career opportunities are rapidly increasing, and where understanding statistics, data sources, and data representation is integral to understanding STEM and the world around us. Museums have the opportunity to play a critical role in introducing the public to data science concepts in ways that center personal relevance, social connections and collaborative learning. However, data science and statistics are difficult concepts to distill and provide meaningful engagement with during the brief learning experiences typical to science museums. This Pilot and Feasibility study brings together data scientists, data science educators, and museum exhibit designers to consider these questions:
What are the important data science concepts for the public to explore and understand in museum exhibits?
How can museum exhibits be designed to support visitors with diverse backgrounds and experiences to engage with these data science concepts?
What principles can shape these designs to promote broadening participation in data science specifically and STEM more broadly?
This Pilot and Feasibility project combines multidisciplinary expert convening, feasibility testing, and early exploratory prototyping around the focal topic of data science exhibits. Project partners, TERC, the Museum of Science, Boston, and The Tech Interactive in San Jose will engage in an iterative process to develop a theoretical grounding and practical guidance for museum practitioners. The project will include two convenings, bringing together teams of experts from the fields of data science, data science education and museum exhibit design. Prior to the first convening, an initial literature summary and a survey of convening participants will be conducted, culminating in a preliminary list of big ideas about data science. Periodically, participants will have the opportunity to rank, annotate and expand this list, as a form of ongoing data collection. During the convenings, participants will explore the preliminary list, share related work from the three disciplines, engage with related data science activities in small groups, and work together to build consensus around promising data science topics and approaches for exhibits. Participant evaluation will allow for iterative improvement of the convenings and the capture of missed points or overlooked topics. After each convening, museum partners will create prototypes that respond to the convening conversations. Prototypes will be pilot tested (evaluated) with an intentionally recruited group of families that includes both frequent visitors and those who are less likely to visit the museum; diversity in terms of race, languages and dis/ability will be reflected in selection. Pilot data collection will consist of structured observations and interviews. Results from the first round of prototyping will be shared with convening participants as a way to modify the list of big ideas and to further interrogate the feasibility of communicating these ideas in an exhibit format. Results from the convenings and from both rounds of prototyping will be combined in a guiding document that will be shared on all three partner websites, and more broadly with the informal STEM learning field. The team will also host a workshop for practitioners interested in designing data science exhibits, and present at a conference focused on museum exhibits and their design.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
The project's activities include regular forums of journalists and social scientists (Slack & Zoom), experimentation with different ways of presenting stats in news graphics and text, focus groups and experiments with audiences, and resources to support journalists beyond our team.
We characterize the factors that determine who becomes an inventor in the United States, focusing on the role of inventive ability (“nature”) vs. environment (“nurture”). Using deidentified data on 1.2 million inventors from patent records linked to tax records, we first show that children’s chances of becoming inventors vary sharply with characteristics at birth, such as their race, gender, and parents’ socioeconomic class. For example, children from high-income (top 1%) families are ten times as likely to become inventors as those from below-median income families. These gaps persist even
DATE:
TEAM MEMBERS:
Alex BellRaj ChettyXavier JaravelNeviana PetkovaJohn Van Reenen
One part personal reflection, one part literature synthesis. This essay reflects on official statistics, common misunderstandings, and the COVID-19 numbers we're all becoming increasingly familiar with. The author calls on news audiences and journalists alike to become more knowledgeable about what official statistics can and can't do -- and to question the epistemic priority that so many people reflexively give to numbers by paying attention to what is not included.
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.
The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The three-year project, Montana Models: Connecting Local and Disciplinary Practices through University-Community Partnerships, focuses on creating, implementing, and studying several learning outcomes associated with youth engagement in mathematical modeling contexts. The project builds on existing partnerships between the state's two research universities and Montana 4-H to target outreach to rural youth and bring them into a network of people who can inspire, support, and sustain STEM learning. Middle school and high school students from rural communities will be invited to a university campus for a residential modeling-based summer program l focused on mathematics and mathematical modeling. Activities at the summer program are designed to engage them in problems relevant to their own backgrounds and experiences and to honor their local funds of knowledge. The primary goal of Montana Models is to use mathematical modeling as a mechanism for bringing everyday mathematical practices already present in rural communities into contact with disciplinary practices. The project focuses on the following research questions: (1) What are the everyday mathematical practices in Montana communities? (2) How can everyday mathematical practices be leveraged and brought into contact with disciplinary practices in service of mathematizing meaningful questions within the community? (3) How do youth identify and get identified with respect to mathematics and with respect to their role in the world? (4) How does participation in project activities affect participants' knowledge of mathematical practices and content? The project uses social design experimentation, a hybrid research methodology which combines the traditions of design-based research with forms of inquiry that involve collaboration among participants, researchers, and other stakeholders, such as critical ethnography. Data sources include field notes from ethnographic observations, interviews, videos of students engaging in modeling activities, artifacts that show their mathematical work, and results from the Attitudes Towards Mathematics Inventory. Through its collaboration with 4-H, Montana Models targets outreach to rural youth across the state, especially those from groups that are typically underrepresented in STEM fields. The project is poised to impact ways in which formal and informal educators understand the knowledge bases that are already present in rural communities and how those bases may inform, support, and sustain STEM learning. Findings and deliverables will be disseminated through a public-facing website and through the 4-H infrastructure. This infrastructure includes Montana 4-H's Clover Communication Contest that will allow participating youth to showcase their projects. Research findings will be shared through local and national conferences and peer-reviewed publications. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Pilot and Feasibility study will investigate strategies for enhancing the mathematics in museum-based making and tinkering activities and lay the foundation for a full research study on broadening family participation in mathematics through making. This proposal builds directly on the NSF-funded Math in the Making convening. During this convening, questions about how to authentically highlight and enhance the mathematics in making and tinkering experiences, and how different math-enhancement approaches might influence learner experiences and outcomes, emerged as critical issues for researchers, educators, and mathematicians alike. The project aims to provide a practical lens to help researchers and educators connect topics across STEM with making and tinkering experiences. The project also seeks to advance theoretical understandings of museum-based learning by exploring ways that activity design and facilitation strategies influence how visitors understand the nature and goals of the experience and, in turn, how these visitor experiences shape learning outcomes. The project is designed to explore the most promising of these math-enhancement strategies in more depth, to propose as a next project and develop a theoretical framework for understanding and describing how these strategies influence how families understand and engage with the mathematics in maker experiences. Through several culturally-responsive approaches developed in collaboration with community-based organizations, the project will research how mathematics in maker experiences influences participant engagement and learning. The project will culminate in the design of a research study. Reports and resources developed by the project will be broadly disseminated to researchers, mathematicians, and educators. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The Montana Girls STEM Collaborative brings together organizations and individuals throughout Montana who are committed to informing and motivating girls to pursue careers in STEM – Science, Technology, Engineering and Mathematics. The Collaborative offers professional development, networking and collaboration opportunities to adults who offer and/or support STEM programs for girls and other youth typically under-represented in STEM. The vision of Montana Girls STEM is that every young person in Montana has the opportunity to learn about STEM careers and feels welcome pursuing any dream they
DATE:
TEAM MEMBERS:
Suzi TaylorRay CallawayCathy Witlock
There is a gap between the discipline of economics and the public it is supposedly about and for. This gap is reminiscent of the divide that led to movements for the public understanding of and public engagement with the natural sciences. It is a gap in knowledge, trust, and opinions, but most of all it is a gap in engagement. In this paper we ask: What do we need to think about — and what do we need to do — in order to bring economics and its public into closer dialogue? At stake is engaged, critical democracy. We turn to the fields of public understanding of science and science studies for
DATE:
TEAM MEMBERS:
Fabien MedveckyVicki Macknight
resourceprojectProfessional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The National Association of Math Circles (NAMC) will convene the Math Circle-Mentor and Partnership (MC-MAP) Workshop in late 2016. The proposed MC-MAP workshop will build the field's understanding of the training content and mechanisms that enhance the knowledge and skill development of participants in Math Circles. The workshop will bring mentors from experienced Math Circle leaders together with novice Math Circle leaders to develop the expertise of the notice leaders and their group to develop their expertise in facilitating math circle activities and in organizing related events. The approximately 180 Math Circles currently operating across the nation enlist mathematics professionals to share their passion for mathematics with K-12 students, teachers, and the general public in contexts that emphasize exploration, problem solving and discovery. This initial conference and Math Circle trainings informed by this conference will help build a community of practice around Math Circles through which novice and existing leaders are connected, encouraged and inspired.
The MC-MAP workshop will include structured planning as well as guided observation and structured debriefing of a demonstration Math Circle sessions. The workshop design will be grounded in research related to effective adult learning and to discovery-based mathematics. The workshop will serve as a training prototype that will assist the National Association of Math Circles to identify effective training formats and materials for both experienced and novice Math Circle leaders. Pre- and post- conference surveys of Math Circle leaders will produce data to be used in planning and designing future trainings. The NAMC will share key findings from the workshop evaluation and workshop resources not only with its membership, but also with other mathematics K-12 outreach programs. Workshop materials will address recruiting and serving diverse participants in Math Circles, including girls and women, persons with disabilities, students from varied socioeconomic backgrounds and underrepresented minorities in STEM.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This proposed effort embraces broad participation by the three Ute tribes, History Colorado, and scientists in the field of archaeology to investigate and integrate traditional ecological knowledge and contemporary Western science. The project will preserve knowledge from the Ute peoples of Colorado and Utah, including traditional technology, ethnobotany, engineering and math. Results from this project will inform educational efforts in similar communities.
This project will build on the long-standing collaborations between History Colorado (HC), the Southern Ute Indian Tribe, Ute Mountain Ute Tribe and Ute Indian Tribe, Uintah & Ouray Reservation, and the Dominguez Archaeological Research Group DARG). HC will implement and evaluate a regional informal learning collaboration focused on Ute traditional and contemporary STEM knowledge serving over 128,000 learners through tribal programs, local history museums and educational networks. This project will advance the understanding of integrated knowledge and the role of Ute people as STEM learners and practitioners. This Informal Science Learning project will increase lifelong STEM learning in rural communities and create a replicable model for collaboration among tribes, history museums, and scientists.