In 1994, the Exploratorium launched the Framework project, a model initiative to demonstrate the vital role science museum exhibits could play in supporting science education reform. This publication offers an overview of the Framework project and discusses its assumptions, challenges, questions, and diverse perspectives. It is intended to help expand the dialogue about science education reform and how informal science museums and science centers can play an appropriate and productive role.
Informal environments—or out-of-school-time (OST) settings—play an important role in promoting science learning for preK–12 students and beyond. The learning experiences delivered by parents, friends, and educators in informal environments can spark student interest in science and provide opportunities to broaden and deepen students’ engagement; reinforce scientific concepts and practices introduced during the school day; and promote an appreciation for and interest in the pursuit of science in school and in daily life. NSTA recommends strengthening informal learning opportunities for all preK
DATE:
TEAM MEMBERS:
National Science Teachers Association
Current empirical research in science and technology studies provides new and different views of science and scientists that contrast markedly with the mythical views that underlie many curricular efforts geared toward increasing scientific literacy. If descriptions of science and scientists that emerge from science and technology studies are legitimate, considerable implications arise for educational aims guiding science instruction, learning experiences directed toward those educational aims, and resources that support those learning experiences and educational aims. In this paper, we (a)
This chapter draws attention to the self-regulatory skills that students use in informal learning settings. Formal and informal learning settings are defined as complementary learning environments and it is pointed out that students differ with respect to the learning environments they find conducive to learning. It is suggested that the goals students set for themselves when learning in an informal learning context are different from the goals they set for themselves in a formal learning context. Furthermore, it is speculated that students attend to different clues and select different self
Positive affect systematically influences performance on many cognitive tasks. A new neuropsychological theory is proposed that accounts for many of these effects by assuming that positive affect is associated with increased brain dopamine levels. The theory predicts or accounts for influence of positive affect on olfaction, the consolidation of long-term (ie. episodic) memories, working memory, and creative problem solving. For example, the theory assumes that creative problem solving is improved, in part, because increased dopamine release in the anterior cingulate improves cognitive
DATE:
TEAM MEMBERS:
F. Gregory AshbyAlice IsenAnd U. Turken
This paper begins by questioning the narrow definition of learning used in much present writing concerning lifelong learning, which tends to focus on the purported economic and societal benefits of prolonging and widening participation in formal education and training programmes. In contrast, much valuable and non-trivial learning already goes on, and has always gone on, outside formal programmes of instruction. This is true both at work and at leisure. Using evidence from a study of patterns of participation in adult learning in South Wales from 1900, the paper argues that if such informal
DATE:
TEAM MEMBERS:
Cardiff UniversityStephen GorardRalph FevreGareth Rees
The purpose of this research study was to investigate: students' schema structure for human evolution; their idiosyncratic conceptual change after visiting a museum exhibition; the role of alternative frameworks during learning; and the function of affect in learning. Thirty eleventh and twelfth grade high school students, eleven males and nineteen females, visited an exhibition on human evolution and participated in an opened-ended pre and post interview and Likert-type questionnaire. The interviews were transcribed, segmented by using shifts in natural language, and pre and post schema
The Magnet Lab has a strong commitment to education. Through the Center for Integrating Research & Learning, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral. Please explore the links listed to the left to find out more about the depth of our educational resources for the community, for teachers and for students as well as our unique research offerings. Our programs are designed to excite and educate students, teachers and the general public about science, technology and the world around them. All of our programs are developed in close collaboration with research scientists and educators. Housed at and partly funded by the MagLab, the Center is uniquely positioned to take advantage of the excellent resources, connections, world-class facilities and cutting-edge science the lab has to offer. We also receive generous support from the National Science Foundation and the State of Florida. The Center maintains a rigorous research agenda designed to investigate how Center programs and materials affect teachers and students. Our Mission Statement is to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages through connections between the National High Magnetic Field Laboratory and the National Science Foundation, the community of Tallahassee, the State of Florida and the nation.
The Milwaukee Public Museum will develop Adventures in Science: An Interactive Exhibit Gallery. This will be a 7250 sq. ft. interactive exhibit with associated public programs and materials that link the exhibit with formal education. The goal of Adventures in Science is to promote understanding of biological diversity, the forces that have change it over time, and how scientists study and affect change. The exhibit will consist of three areas. "Our Ever-Changing World" will feature "dual scene" habitat dioramas that will convey at-a-glance how environments change over time. "The Natural History Museum" will be a reconstruction of a museum laboratory and collections area to protray behind-the-scenes scientific and curatorial activities that further the study of biological diversity, ecology and systematics. An "Exploration Center: will bridge these two areas and will be designed to accommodate live presentations, group activities and additional multimedia stations for Internet and intranet access. Using interactive devices, visitors will be encouraged to make hypothesis, examine evidence, compare specimens, construction histories of biological and geological changes, and develop conclusions about the science behind biodiversity and extinction issues. Visitors should also come away with an increased understanding of the role of systematic collections in understanding biological diversity. Information on MPM research programs will be highlighted in "The Natural History Museum" section and will be updated frequently. Annual Teacher Training Institutes for pre-service and in-service teachers will present strategies for using the gallery's multimedia stations, lab areas, and Web site links. Special attention will be given to reaching new audiences including those in the inner city and people with disabilities.
DATE:
-
TEAM MEMBERS:
Allen YoungJames KellyPeter SheehanSusan-Sullivan BorkinRolf JohnsonMary Korenic
The Please Touch Museum is requesting $684,602 for the development of educational resource materials in science and mathematics for four-year old children, and training for their parents and teachers in Head Start and other daycare programs. This 44 month project will develop, test, and produce six materials-based science and math activity kits, science training workshops for parents and daycare educators, and related family materials and events. It will culminate in a national dissemination program to promote more effective preschool science and math education through materials- based science inquiry and increased professional relations between educators in youth museums and daycare centers.
DATE:
-
TEAM MEMBERS:
Marzy SykesRenee HenryTracey Prendergast
The National Action Council for Minorities in Engineering (NACME) is implementing a new, 41-month phase and augmentation of a national public service advertising campaign that was launched in 1995. The Math is Power campaign was developed by NACME in partnership with The Advertising Council toward the goal of creating an increase in the number of students who graduate from high school with prerequisite courses to enroll in any rigorous, math- or science-based undergraduate program. The current project is designed to reach all students but is especially targeted to groups currently underrepresented in math and science and will be anchored by highly directed television, radio, print, and outdoor advertising. The new phase will introduce a Math is Power interactive web site. The website will allow NACME to add direct services to the information packets that are sent to students and parents who respond to the public service advertising. It will include: content relevant, age appropriate math challenges, games, problems, and contests; a national registry of math opportunities where students, parents, and teachers can find mathematics resources; an on-line special events chat room; and a best practices bulletin board. NACME will coordinate their outreach efforts with services such as the Community Technology Center Network (CTCnet) in order to facilitate web access for youth and parents in disadvantaged neighborhoods. They also will work directly with 25 cities with the greatest numbers of citizens who fall in the target population. Math and Science education services in these cities will be able to localize much of the material through such means as placing a local tag on the television ads. In addition, the NACME production and distribution capabilities will be substantially expanded to meet the tremendous demand for Math Is Power materials.
Five small science museums will form "TEAMS (Traveling Exhibits at Museums of Science) Collaborative". The partners include the Montshire Museum of Science, Norwich, VT; The Catawba Science Center, Hickory, NC; Sciencenter, Ithaca, NY; Discovery Center Museum, Rockford, IL; and the Ann Arbor Hands-On Museum, Ann Arbor, MI. Each museum partner will develop a 1500 sq. ft. (140 m2) traveling exhibit that will include ten to fifteen interactive units and supporting graphics and will circulate to all members of the partnership. The exhibition topics are: AirPlay (Montshire Museum of Science, Dirt (Catawba Science Center), You Can Count On It (Sciencenter), Amusement Park Science (Discovery Center Museum), and Eureka Labs: Science from Head to Toe (Ann Arbor Hands-On Museum). Following the circulation among the consortium members, it is anticipated that the exhibits will circulate more broadly via the Association of Science-Technology Centers Traveling Exhibit's Program. In addition to developing these exhibits, the collaboration has an additional goals 1) focusing on the family audiences by working together to enhance the family science learning through the development of resources that can be used by families that are related to exhibition topics, 2) building institutional expertise in exhibit design, family programming, and evaluation; and 3) conducting research on family learning and sharing results with the field. Complementary materials and activities for teachers will also be developed for each exhibit.
DATE:
-
TEAM MEMBERS:
David GoudyCharles TrautmannSarah WolfMike SinclairJames FrenzaCynthia Yao