Madison Area Technical College will refine and evaluate the effectiveness of Fusion Science Theater (FST), a combination of theater, science demonstrations, and participatory components, as an ISE teaching model, to test its transferability through development and trials of an exportable version (Science-in-a-Box), and to recruit appropriate partners nationally in preparation for a larger scale implementation and evaluation. A Fusion Science Theater event utilizes the collaborative effort of applied expertise in science, theater and education. These events support playful interactions as characters engage the emotions of the audience. The Act-It Out sequences invite children and parents to become involved in modeling scientific concepts, thus creating an environment where learning is the product of social interaction and kinesthetic, affective and interpersonal learning. To provide proof-of-concept that this a transferable model, an independent, interdisciplinary team from the University of Wisconsin, Madison Biotechnology Center will produce their own FST event that will be evaluated and compared to an existing FST program. The Madison Children's Museum will partner as a venue for the event and provide expertise in the planning process. The ultimate project resulting from this planning would include workshops to train collaborative teams from around the country in the principles and practices of FST, promotion of cross-disciplinary collaboration among professionals, and honing of an evaluation design for FST events. The trained teams would then produce FST events that reach children, their parents and the general public. The planning grant project design includes activities necessary to further test, verify and document Fusion Science Theater events. It provides a proof of concept of model effectiveness and transferability. It also initiates, develops and assesses ways to train other groups to implement the model and publicizes the model to national professional networks to spread the work and recruit site teams.
The Louisville Science Center and the National Center for Family Literacy will engage in a year's planning to introduce the Parent- Child Interaction Project to teams of educators in six target cities. The goal is to explore the feasibility of a future national implementation of the model. The Parent-Child Interaction Project aims to empower underserved parents to become their child's most important teacher and provide these parents and their children the opportunity to gain science, mathematics, and technology education together. The participants are the parents and pre-school children enrolled in family literacy programs. During the Project, parents and children will make at least four trips to the participating science-technology center and evaluate their trips during follow-up class sessions. The joint efforts of the family literacy programs and science- technology centers can achieve the following goals: * Improve the involvement of low-income and low-literacy parents in the education of their children, specifically in the areas of science, mathematics and technology. * Increase the awareness of local science and technology centers as available community resources, particularly for underserved audiences. * Use science center visits and related projects to extend NCFL classroom learning for adult education students, their children and their teachers.
The California Museum of Science and Industry requests $1,103,410 over three years to work in a partnership with the National Council of La Raza to develop two content-rich "discovery rooms" in the Museum that are supportive of further learning in the larger museum context and that guide parents from culturally diverse backgrounds in supporting their children's science learning at the museum and in the home. A major component of the project is the "Our Place Academy," a comprehensive education program that will train Latino parents of preschool and school-age children to serve as learning facilitators in the discovery rooms. The curriculum of the Academy will focus on skills that will both serve Latino parents as partners in their children's science education and as leaders and disseminators within their own communities. A training guide entitled, "Making it our Place" will be developed as a practical guide for building a trained staff from the parents in a community to facilitate learning in a discovery setting. Target audience is parents with preschool and school-aged children.
DATE:
-
TEAM MEMBERS:
Ann MuscatSylvia ConnollySharon SchonhautCarol ValentaRoxie EsterleMaria Bonillas
Through a collaboration of the DuPage Children's Museum, Argonne National Laboratory, and National-Louis University, a three-element project is being conducted focusing on the following: 1) a research component that studies children's naive perceptions of the phenomena of air and wind energy, 2) an exhibition component that uses the project research to design, develop, and construct a 3- 4,000 square foot "process" oriented exhibition with a 2-story exhibit tower and 12-15 replicable exploratory workstations, 3) a program component that offers explorations for children adapted for museums, preschools and elementary school classrooms. Target audiences include young children and their parents, pre- and in- service early childhood teachers, and museum professionals interested in reaching very young children.
The Museum of Science (Boston) Discovery Center, MIT Early Childhood Cognition Lab, Boston Children's Museum, Indianapolis Children's Museum, Children's Museum of Richmond, and Maryland Science Center will help develop and evaluate a variety of methods to engage adults in activities that help the adults understand and apply current cognitive science research on children's exploratory play and causal reasoning development. The primary audience is adults with young children; secondary audiences are informal science education professionals who operate early childhood exhibit areas and cognitive science researchers.
Children's Discovery Museum of San Jose, CA, will develop a three-pronged project called "Round and Round" focused on the geometry, science and technology of circles and wheels. All three project products (one permanent and one traveling version of a 2000-sq. ft. exhibition; an array of complementary educational programs for children ages 3-10; and published research on patterns of interactions among families of diverse backgrounds in museum settings) will be developed in cooperation with developmental psychologists from the University of California at Santa Cruz and advisors from Latino and Vietnamese communities in San Jose. "Round and Round" exhibits and programs will offer a trans-cultural, gender-neutral, and multi-disciplinary look at the ingenuity and ubiquity of circles. Together they will provide a comprehensive array of interactive experiences that help children, ages 3-10, and adults explore the mathematics, physics, physical properties and engineering advantages of circles and wheels. The project is expected to serve three million visitors in science and children's museums across the nation within four years of implementation.
Peep and the Big, Wide World is an NSF-funded television series for children ages 3 to 5. The Children's Museum proposes to build on this show and extend its impact through exhibits, education and professional development programs. Specifically, planning grant funds will be used to 1) gather best practices in preschool & brand-based exhibition development, 2) conduct a front-end survey of potential host museums to determine training needs of museum staff, parents, caregivers and teachers of preschool children, and 3) clarify design of the education and professional development programs associated with the exhibit.
Visitors to the Science Museum of Minnesota provided feedback on the books, How Small Is Nano? and Is That Robot Real? in order to assess the books and their ability to impart knowledge of nanoscience. The visitors, 63 adults in all, read one of the books to the child or children accompanying them, then answered a series of questions about their experience including their interest in and enjoyment of the book they read, as well as the age appropriateness of the book. The report compares and contrasts the two books throughout.
The Science Museum of Minnesota conducted the StretchAbility program on January 25th, and February 1st, 2010, and the Children’s Museum of Houston conducted the program on November 10th, 14th, and 25th, 2009. A total of 20 paired adult and child groups provided feedback through a survey designed to measure their engagement with and comprehension of the activity. After the activity, evaluators targeted participating children 8 or younger who were verbal for the interview, and gave a survey to the child’s parent to complete. Paired surveys were used due to the lower verbal nature of the younger
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will develop and research an integrated children's media and early childhood educator professional development strategy to prepare preschoolers with social-emotional skills that provide a foundation for later math learning success. The social-emotional skills include persistence, risk-taking, regulating anxieties, and collaborating to solve problems. Media components include Peg+Cat television episodes, videos, games and apps distributed through PBS broadcast and online. The integrated professional development model is designed to impact these educators' understanding of math and develop their skills for fostering in children a positive math mindset. Additional resources include a new Peg+Cat summer day camp at the Carnegie Science Center in Pittsburgh. The project partners include a media company, The Fred Rogers Company; researchers at the University of Pittsburgh and St. Vincent College; and the evaluator, Rockman et al. This project is unique in its focus on integrating social-emotional skills with early math learning and educator skill development. It will fill an important niche in the research literature and has the potential to impact media practice which is undergoing significant change as new digital tools and technologies become available for learning. Both standardized and researcher-developed measures will be used to assess learning outcomes, including early childhood educators' attitudes and quality of instruction, as well as children's interest and engagement in math. The research design includes iterative data collection to inform the development and refinement of the professional learning for teachers. The mixed methods approach will include classroom observations, interviews and focus groups with educators, and parent questionnaires. Key questions include: does exposure to Peg+Cat positively relate to children's use of social-emotional skills during math learning activities? Does educators' exposure to the professional development training improve their attitudes and abilities to infuse math instruction with social-emotional skills? Does having an educator who received Peg+Cat training impact children's engagement and interest in math?
Disparities in engineering participation and achievement by women and individuals from traditionally underserved racial and ethnic groups have been persistent. Approaches outside the context of university and school reform, including approaches to supporting interest development in early childhood, have not been fully considered by educators and policymakers. This AISL Pathways project will focus on engineering, which has emerged as a critical topic in the STEM education field and a prominent aspect of educational standards and policies. Building on a strong empirical and theoretical base, it will lay the foundation for future research efforts to advance the field's limited understanding of early childhood engineering-related interest development, especially through parent-child interactions; create research tools for studying engineering-related interest in young children; and identify effective strategies for supporting long-term engineering interest pathways. "Head Start on Engineering" is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Through an asset-based approach and authentic engagement with families and community organizations, Head Start on Engineering will pilot research and program activities that are sensitive to the constraints of low-income families and build on the resources and funds of knowledge within these communities. It will test and refine an innovative, theoretical model of early childhood interest development. The overall design of the pilot study will be mixed-method and short-term longitudinal, with data collected before, during, and after program implementation from participating families. Quantitative measures will allow for consistent comparisons across groups and within families, while qualitative data will help explore complex factors and processes hypothesized in the theoretical framework and related to program implementation. This work will allow the team time to address unanswered questions and issues around how to feasibly operationalize key aspects of the revised theoretical model in preparation for more extensive, longitudinal and experimental investigations as part of the next phase of the project. Understanding and honoring parents' beliefs, knowledge, and experiences is central to this project. In developing and implementing both the programs and research activities, the team will adopt culturally responsive and asset-based perspectives. The Pathways project is a collaboration between the Institute for Learning Innovation (ILI), a nonprofit organization dedicated to the advancement of lifelong, free-choice learning for all communities through research, practice, and policy initiatives; Mt. Hood Community College Head Start program; the Oregon Museum of Science and Industry (OMSI), a nationally renowned science museum; and the Center for STEM Education at the University of Notre Dame. The project involves families with four-year-old children who attend the Head Start program. The collaboration between educators, community organizations, and researchers and the integrated approach to research and program development will ensure that study findings translate to practical and effective education strategies and that future research efforts are well-grounded in the realities of practitioners and learners.
The Oregon Museum of Science and Industry (OMSI), in partnership with the J. Craig Venter Institute (JCVI), proposes to develop the Zoo in You: Exploring the Human Microbiome, a 2,000 square foot bilingual (English and Spanish) traveling exhibition for national tour to science centers, health museums, and other relevant venues. The exhibition will engage visitors in the cutting edge research of the National Institutes of Health's (NIH) Human Microbiome Project (HMP) and explore the impact of the microbiome on human health. To enrich the visitor experience, the Zoo in You project will also produce an interactive bilingual website and in-depth programs including science cafes and book groups for adult audiences. JCVI will provide its expertise and experience as a major site for HMP genomics research to the project. In addition, advisors from the Oregon Health & Science University, Multnomah County Library, the Multnomah County Health Department, ScienceWorks Hands-On Museum, Science Museum of Minnesota, and other experts will guide OMSI's development of exhibits and programs. The Institute of Learning Innovation in collaboration with OMSI will evaluate the exhibits, programs, and website. Front-end, formative, remedial, and summative evaluation will be conducted in English and Spanish at OMSI, ScienceWorks, and tour venues. The exhibition's target audience is families and school groups with children in grades 4-12. Latino families are a priority audience and the project deliverables will be developed bilingually and biculturally. The Zoo in You will tour to three venues a year for a minimum of eight years. We conservatively estimate that over two million people will visit the exhibition during the national tour. This project presents a powerful opportunity to inform museum visitors about new discoveries in genomic research, to invite families to learn together, and to present and interpret health-related research findings for diverse audiences. PUBLIC HEALTH RELEVANCE (provided by applicant): Our research education program, the Zoo in You (ZIY): Exploring the Human Microbiome, is relevant to public health because it will inform exhibition visitors and program participants about the significant new research of the NIH's Human Microbiome Project (HMP). Visitors will make connections between basic research, human health, and their own personal experiences. The bilingual (English and Spanish) ZIY exhibits and programs will present research finding and public health information in enjoyable and engaging ways to reach diverse family and adult audiences.