Skip to main content

Community Repository Search Results

resource project Public Programs
KID Museum will develop and test a framework for working with community organizations to design learning experiences and create a facilitation guide for integrating cultural appreciation with maker-based learning. Building on its established Cultural Days programming, the museum will partner with four organizations that represent the region's largest ethnic populations. Together, they will plan, design, prototype, and refine new programs and experiences for children ages 4 to 14 and their families. The project team will adapt an IMLS-funded STEM-expert co-development model to develop and present cultural programs both at the museum and in the community. The project team will evaluate and refine the programs through visitor surveys. The museum will share the resulting framework and facilitation guide with other informal learning spaces to support the implementation of similar programs.
DATE: -
TEAM MEMBERS: Amanda Puerto Thorne
resource project Exhibitions
Sciencenter will develop a touring exhibition, Engineer.Design.Build, to spark interest and build confidence in STEM by providing learning opportunities about the broad impact engineers have on the environment and society. The museum will partner with Cornell University's College of Engineering to develop scientific content which will be reviewed by an advisory board of representatives from the academic, business, and informal science education sectors. Partners from informal learning institutions will provide expertise on the educational content to ensure that it is accessible and engaging for the target audience of 5-11 year olds. Through a combination of focus groups, youth/guest feedback during exhibition development, and experts in girls' engagement in STEM on the advisory board, the museum will ensure that the exhibition and programming are designed to appeal to girls, and accessible to all learners. The project will include front-end, formative, and summative evaluation through observations and mediated interviews, collecting data from youth, families, and school groups.
DATE: -
TEAM MEMBERS: Michelle Kortenaar
resource research Public Programs
Using a design-based research approach, we studied ways to advance opportunities for children and families to engage in engineering design practices in an informal educational setting. 213 families with 5–11-year-old children were observed as they visited a tinkering exhibit at a children’s museum during one of three iterations of a program posing an engineering design challenge. Children’s narrative reflections about their experience were recorded immediately after tinkering. Across iterations of the program, changes to the exhibit design and facilitation provided by museum staff corresponded
DATE:
TEAM MEMBERS: Maria Marcus Diana Acosta Pirko Tougu David Uttal Catherine Haden
resource project Public Programs
A makerspace is a place where participants explore their own interests and learn by creating, tinkering, and inventing artifacts through the use of a rich variety of tools and materials. This project will develop and research a flexible model for makerspaces that can be adapted to local settings to support informal STEM learning for hospitalized, chronically ill patients in pediatric environments who are predominantly youth of color from low-income backgrounds. These youth are subject to health disparities and healthcare inequities. Their frequent absence from school and other activities disrupt friendship formations, reduce their opportunities for social support, reduce their access to environments where they can feel a sense of self-agency through learning and creative activities. Through patient centered co-design, this project will build adaptable STEM makerspace environments conducive to STEM-rich learning, the exercise of self-agency, and development of STEM identity. Project design will focus on the sensitive nature of working with vulnerable populations (i.e., immunocompromised patients). The project will develop and disseminate several resources: (1) a flexible makerspace model that can be adapted to work in different pediatric settings; (2) research methods for conducting research in highly sensitive environments with and alongside young patients; and (3) professional development resources and a playbook including guidebook and facilitators guide that will articulate principles and processes for designing, implementing and sustaining makerspaces in pediatric settings. These resources will be widely disseminated through maker and other informal STEM networks.

The project will pursue two innovations. First, the project will develop the physical design of adaptable informal STEM makerspaces in pediatric settings. Second, the project will develop innovative patient-centered methodologies for studying approaches to physical design and the effects of makerspace installations for informal STEM-learning, self-agency, and STEM identity development. Using a design-based research approach, the project will investigate: (1) the extent to which physical makerspace designs support access to material, relational, and ideational resources for STEM-learning and well-being; (2) the extent to which makerspace installations, researchers, and medical care staff support patients in accessing and generating tools and other resources for personal learning and a sense of agency; and (3) the extent to which makerspace design with a focus on affording material, relational, and ideational resources provide rich opportunities for young patients to explore their own interests and cultivate STEM identities. One of the project's innovations, beyond development of adaptable makerspace model involves developing an innovative patient-centered methodology for conducting educational research toward broadening participation in STEM in highly sensitive medical care environments. The project will employ a mixed-methods research design and collect a variety of data to address these areas of research including documentation of makerspace design plans and renderings, observational data gathered through fieldnotes, video and audio recordings, informal interviews with patients, their families, and child-care staff, and patient generated artifacts. Articles for researchers and practitioners will be submitted for publication to appropriate professional journals and peer-reviewed publications.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Gokul Krishnan Maria Olivares
resource project Public Programs
Research that seeks to understand classroom interactions often relies on video recordings of classrooms so that researchers can document and analyze what teachers and students are doing in the learning environment. When studies are large scale, this analysis is challenging in part because it is time-consuming to review and code large quantities of video. For example, hundreds of hours of videotaped interaction between students working in an after-school program for advancing computational thinking and engineering learning for Latino/a students. This project is exploring the use of computer-assisted methods for video analysis to support manual coding by researchers. The project is adapting procedures used for computer-aided diagnosis systems for medical systems. The computer-assisted process creates summaries that can then be used by researchers to identify critical events and to describe patterns of activities in the classroom such as students talking to each other or writing during a small group project. Creating the summaries requires analyzing video for facial recognition, motion, color and object identification. The project will investigate what parts of student participation and teaching can be analyzed using computer-assisted video analysis. This project is supported by NSF's EHR Core Research (ECR) program, the STEM+C program and the AISL program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. The project is funded by the STEM+Computing program, which seeks to address emerging challenges in computational STEM areas through the applied integration of computational thinking and computing activities within disciplinary STEM teaching and learning in early childhood education through high school (preK-12). As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The video analysis systems will provide video summarizations for specific activities which will allow researchers to use these results to quantify student participation and document teaching practices that support student learning. This will support the analysis of large volumes of video data that are often time-consuming to analyze. The video analysis system will identify objects in the scene and then use measures of distances between objects and other tracking methods to code different activities (e.g., typing, talking, interaction between the student and a facilitator). The two groups of research questions are as follows. (1) How can human review of digital videos benefit from computer-assisted video analysis methods? Which aspects of video summarization (e.g., detected activities) can help reduce the time it takes to review the videos? Beyond audio analytics, what types of future research in video summarization can help reduce the time that it takes to review videos? (2) How can we quantify student participation using computer-assisted video analysis methods? What aspects of student participation can be accurately measures by computer-assisted video analysis methods? The video to be used for this study is drawn from a project focused on engineering and computational thinking learning for Latino/a students in an after-school setting. Hundreds of hours of video are available to be reviewed and analyzed to design and refine the system. The resulting coding will also help document patterns of engagement in the learning environment.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Marios Pattichis Sylvia Celedon-Pattichis Carlos LopezLeiva
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource evaluation Public Programs
This study explored the effect of depth of learning (as measured in hours) on creativity, curiosity, persistence and self-efficacy. We engaged ~900 parents and 900 students across 21 sites in Washington, Chicago, Los Angeles, New York, Alabama, Virginia and the United Arab Emirates, in 5-week (10-hr) Curiosity Machine programs. Iridescent trained partners to implement the programs. Thus, this analysis was also trying to establish a baseline to measure any loss in impact from scaling our programs and moving to a “train-the-trainer” model. We analyzed 769 surveys out of which 126 were paired. On
DATE:
TEAM MEMBERS: Iridescent
resource evaluation Public Programs
Maker Corps is a program delivered by the Maker Education Initiative (Maker Ed) to increase organizational capacity to develop and deliver maker programing. Since its inception in 2013, the program has grown to support over 100 organizations by providing professional development, connections to a community of other maker educators and individualized support. Over time the program elements have changed in response to feedback from participants, collaboration with evaluators and shifts in focus for Maker Ed’s goals. In the spirit of maker education – tinkering, observing, responding, iterating –
DATE:
TEAM MEMBERS: Alice Anderson
resource project Public Programs
Flying Higher will develop a permanent hands-on exhibit that conveys the fundamentals of flight, technology, materials science, and NASA’s role in aeronautics for learners ages 3-12 years and their parents/caregivers and teachers. The exhibit, public programs, school and teacher programs, and teacher professional development will develop a pipeline of skilled workers to support community workforce needs and communicate NASA’s contributions to the nation and world. An innovative partnership with Claflin University (an historically black college) and Columbia College (a women’s liberal arts college) will provide undergraduate coursework in informal science education to support pre-service learning opportunities and paid employment for students seeking careers in education and/or STEM fields. The projects goals are:

1) To educate multi-generational family audiences about the principles and the future of aeronautics; provide hands-on, accessible, and immersive opportunities to explore state-of-the-art NASA technology; and demonstrate the cultural impact of flight in our global community.

2) To provide educational standards-based programming to teachers and students in grades K–8 on NASA-driven research topics, giving the students opportunities to explore these topics and gain exposure to science careers at NASA; and to offer teachers support in presenting STEM topics.

3) To create and implement a professional development program to engage pre-service teachers in presenting museum-based programs focused on aeronautics and engineering. This program will provide undergraduate degree credits, service learning, and paid employment to students that supports STEM instruction in the classroom, explores the benefits of informal science education, and encourages post-graduate opportunities in STEM fields.
DATE: -
TEAM MEMBERS: Julia Kennard
resource research Public Programs
A three-day art project in an afterschool program with no specific arts component illustrates the potential—and the challenges—of engaging children in creating art using recycled materials.
DATE:
TEAM MEMBERS: Angela Eckhoff Amy Hallenbeck Mindy Spearman
resource evaluation Media and Technology
This report is the result of a project to investigate through a sociocultural lens whether girls-only, informal STEM experiences have potential long-term influences on young women's lives, both in terms of STEM but also more generally. The authors documented young women's perceptions of their program experiences and the ways in which they influenced their future choices in education, careers, leisure pursuits, and ways of thinking about what science is and who does it. This report includes the questionnaire used in the study.
DATE:
resource research Exhibitions
This paper reports a formative evaluation of an interactive exhibit in the Museum of Science, Boston, that encouraged visitors to create a model using everyday materials. The materials provided for visitors to create their models changed during the period of the evaluation, and visitors were observed and interviewed as they engaged with the various prototypes. Evaluation results show that the type of modeling material presented influenced the visitors' model making process and individual learning and behaviors as well as the interactions visitors had with each other.
DATE: