Skip to main content

Community Repository Search Results

resource research Museum and Science Center Exhibits
In this paper we compare pre-COVID-19 and post-2021 Tactile Mental Cutting Test assessment data from blind or low-vision participants including scores and test duration between 2019 and 2022. Results show a statistically significant difference in how long it took participants to complete the TMCT between the two timeframes.
DATE:
TEAM MEMBERS: David Searle Daniel Kane Natalie Shaheen Wade Goodridge
resource research Afterschool Programs
This paper presents a continued reliability analysis of the parallel TMCT subtests A & B with the BLV population. Data was collected from BLV participants attending National Federation of the Blind (NFB) conventions, learning centers for the blind, and STEM-oriented NFB summer camps for high school students.
DATE:
TEAM MEMBERS: Candice Hamilton Emily Stratman Daniel Kane Jenny Lee Blonquist Natalie Shaheen Wade Goodridge
resource research Museum and Science Center Exhibits
This paper explores data collected from BLV participants who completed a TMCT test at National Federation of the Blind (NFB) sponsored summer programs for BLV youth, blindness training centers, and state and national NFB conventions. Raw scores from each TMCT participant were analyzed and ranked into high, medium, and low performing groups to help identify main characteristics of each group.
DATE:
TEAM MEMBERS: Daniel Kane Natalie Shaheen Wade Goodridge
resource research Afterschool Programs
The purpose of this research paper is to explore advantages and disadvantages of conducting an engineering experience for blind and low vision (BLV) participants in a virtual/online environment. This experience was designed to expose BLV high school students to engineering content and enhance their spatial ability. Spatial ability is an intelligence generally defined as the ability to generate, retain, retrieve, and transform well-structured visual images and is particularly important to fields of science, technology, engineering, and math (STEM). A variety of spatial ability constructs have
DATE:
TEAM MEMBERS: Gary Timko Natalie Shaheen Wade Goodridge Theresa Green Daniel Kane
resource research Museum and Science Center Exhibits
The impetus behind this effort was to create a platform for initial support to TEE professionals who may have a blind and low-vision (BLV) student in their courses.  Specific examples, instructions, and applications for many of the commonly-used tools and techniques are included here as part of this overall effort to teach TEE concepts through socially relevant contexts by adapting older methods to facilitate new opportunities in our school systems for BLV youth. 
DATE:
TEAM MEMBERS: Scott Bartholomew Wade Goodridge Natalie Shaheen Anne Cunningham
resource research K-12 Programs
We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings.
DATE:
TEAM MEMBERS: Katie Spellman Douglas Cost Christine Villano
resource evaluation Afterschool Programs
The Arctic Harvest-Public Participation in Scientific Research (which encompasses the Winterberry Citizen Science program), a four-year citizen science project looking at the effect of climate change on berry availability to consumers has made measurable progress advancing our understanding of key performance indicators of highly effective citizen science programs.
DATE:
TEAM MEMBERS: Angela Larson Kelly Kealy Makaela Dickerson
resource research Higher Education Programs
The project team published a research synopsis article with Futurum Science Careers in Feb 2023 called “How Can Place Attachment Improve Scientific Literacy?”
DATE:
TEAM MEMBERS: Julia Parrish Benjamin Haywood
resource project Public Programs
Stark inequities evident in the low representation of Black women in Science, Technology, Engineering, Mathematics, and Medicine (STEMM) careers persist despite considerable investment in the diversification of the education-to-workplace STEMM pipeline. College participation rates of Black women measure 4-5% of all degrees in biological and physical sciences, 2-3% of degrees in computer science and math, and roughly 1% in engineering. Ultimately, Black women make up only 2.5% of the workforce in STEMM-related fields, indicating that they chronically experience stalled professional advancement. Because there are so few longitudinal studies in either formal or informal settings, educators and researchers lack critical insights into why BA/BS credentialed Black women drop out of STEMM careers at high rates upon entering the workforce. This Research in Service to Practice project will conduct a longitudinal examination of key professional outcomes and life trajectories among adult Black women who enrolled Women in Natural Sciences (WINS), a 40-year-old out-of-school time (OST) high school STEM enrichment program. Prior research on WINS documents that alumnae outperform national averages on all metrics related to STEMM advancement up through college graduation. This study will test the hypothesis that such success continues for these cohorts as they pursue life goals and navigate the workforce. Findings from this study will promote the progress of science, pivotal to NSF’s mission as the project builds knowledge about supportive and frustrating factors for Black women in STEMM careers. Strategic impact lies in the novel participant-centered research methods that amplify Black women’s voices and increase both accuracy and equity in informal STEM learning research.

This research probes the experiences of Black women at a critical phase of their workforce participation when BS/BA credentialed WINS alumnae establish their careers (ages 26-46). The team will conduct a longitudinal comparative case study of outcomes and life trajectories among 20 years of WINS cohorts (1995-2015). Research questions include (1) What do the life-journey narratives of WINS alumnae in adulthood reveal about influential factors in the socio-cultural ecological systems of Black women in STEMM? (2) What are the long-term outcomes among WINS women regarding education, STEMM and other careers, socio-economic status, and STEMM self-efficacy and interest? How do these vary? (3) What salient program elements in WINS are highlighted in alumnae narratives as relevant to Black women’s experiences in adulthood? How do these associations vary? (4) How do selected outcomes (stated in RQ2) and life story narratives among non-enrolled applicants compare to program alumnae? and (5) How do salient components in the WINS program associate with socio-cultural factors in regard to Black women’s careers and other life goals? Participants include 100 Black WINS alumnae as an intervention group and a matched comparison group of 100 Black women who successfully applied to the WINS program but did not or could not enroll. Measurable life outcomes and life trajectory narratives with maps of experiences from both groups will be studied via a convergent mixed methods design inclusive of quantitative and qualitative analyses. Comparisons of outcomes and trajectories will be made between the study groups. Further, associations between alumnae’s long-term outcomes and how they correlate their WINS experiences with other socio-cultural factors in their lives will be identified. It is anticipated that findings will challenge extant knowledge and pinpoint the most effective characteristics of and appropriate measures for studying lasting impacts of OST STEMM programs for Black women and girls. The project is positioned to contribute substantially to national efforts to increase participation of Black women in STEMM.
DATE: -
TEAM MEMBERS: Ayana Allen-Handy Jacqueline Genovesi Loni Tabb
resource research Public Programs
Background. STEM identity has emerged as an important research topic and a predictor of how youth engage with STEM inside and outside of school. Although there is a growing body of literature in this area, less work has been done specific to engineering, especially in out-of-school learning contexts. Methods. To address this need, we conducted a qualitative investigation of five adolescent youth participating in a four-month afterschool engineering program. The study focused on how participants negotiated engineering-related identities through ongoing interactions with activities, peers
DATE:
resource evaluation Afterschool Programs
Integrating Science Into Afterschool: A Three-Dimensional Approach To Engaging Underserved Populations In Science, or STEM 3D, was a five year project led by The Franklin Institute. The project was created with three major goals: to (1) increase youth engagement in hands-on, inquiry based, science projects; (2) cultivate intergenerational/parental support for science learning; and (3) evaluate the effectiveness of this 3-D (afterschool, home, and community) approach in engaging children, families, afterschool facilitators, and community-based organizations in science learning and the promotion
DATE:
TEAM MEMBERS: Sukey Blanc Dale McCreedy Tara Cox
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones