Skip to main content

Community Repository Search Results

resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants. This pilot study, Akeakamai (Hawaiian, literally lover of wisdom, scientist, scholar), will explore the convergence of contemporary Western science topics with indigenous Hawaiian culture-based science experiences as a mechanism to strengthen STEM perceptions, cross-cultural science collaboration, and multi-generational community engagement with STEM. The work is grounded in the notion that STEM learning within the context of local informal indigenous community settings should be culturally responsive and culturally sustaining, and should privilege indigenous epistemologies. If successful, the results of this pilot could provide valuable insights on effective approaches to developing and implementing culturally consistent and sustainable multigenerational STEM engagement among Native Hawaiians and Pacific Islanders, and across the Pacific region.

Over a two-year duration, the study will address three research questions. (1) To what extent does inclusion of culture into curriculum designed for informal Culture-Science Explorations mitigate perceived barriers to participation in science? (2) What barriers do community members perceive to limit their participation in science? (3) What are the areas of consonance between Native Hawaiian and Western scientific approaches to knowledge and learning? Approximately 200 predominantly Native Hawaiian and Pacific Islanders, ranging in age from 8 - 85 years old, will participate in the pilot. The research team will collect participant data during all phases of the social intervention, a suite of culture-science exploration experiences held at the Halau Inana, a Native Hawaiian community collaboration space. The intervention will employ pedagogical methods that are responsive to Hawaiian cultural norms to deliver content that integrates across the interfaces of Western science and technology and indigenous knowledge, and incorporates Hawaiian language. A rigorous external evaluation will also be conducted. The results of the research and evaluation will be broadly disseminated. Ultimately, the project aims to develop a conceptual and practical cross-cultural, multi-generational framework for community-based science learning in Hawai'i that can serve as a model for future research and programs that extend into and beyond indigenous communities of the Pacific region.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Helen Turner Jonathan Baker Chrystie Naeole
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource evaluation Media and Technology
This evaluation reports on the Mission: Solar System project, a 2-year project funded by NASA. The goal of the Mission: Solar System was to create a collection of resources that integrates digital media with hands-on science and engineering activities to support kids’ exploration in formal and informal education settings. Our goal in creating the resources were: For youth: (1) Provide opportunities to use science, technology, engineering, and math to solve challenges related to exploring our solar system, (2) Build and hone critical thinking, problem-solving, and design process skills, (3)
DATE:
TEAM MEMBERS: WGBH Educational Foundation Sonja Latimore Christine Paulsen
resource evaluation Public Programs
This report summarizes the evaluation results from the NSF funded Eight-Legged Encounters family event that uses arachnids as a hook to draw public interests towards science. The event involves informative and hands-on activities that bridge the gap between academia and the public, extending knowledge about arachnids to children and their parents. The Bureau of Sociological Research (BOSR) at UNL was contracted to evaluate Eight-Legged Encounters. The data collection for this report involves five events and three audiences: adults, children, and the volunteers of the event. Two events were
DATE:
TEAM MEMBERS: University of Nebraska Lincoln Eileen Hebets
resource evaluation Public Programs
August, 2009 Communities of Effective Practice, 2008-2009 Evaluation Abstract: The Communities of Effective Practice (CEP) project is a National Science Foundation (NSF)-funded project to develop a professional development model for supporting math and science instructional practices that are culturally responsive within American Indian communities. This report summarizes findings from the Year 3 evaluation (conducted during the 2008-2009 academic year) and discusses these findings within the context of the Years 1 and 2 evaluations. It presents key considerations for developing a Community
DATE:
TEAM MEMBERS: Gina Magharious Kasey McCracken Utah State University
resource project Public Programs
Girl Scouts of Western Washington and Seattle University have collaborated to develop an innovative model for science learning in youth programs. By embedding training and support on science inquiry facilitation directly into existing Girl Scout systems, the project is empowering volunteers to effectively facilitate inquiry science explorations with youth. We are engaging a new audience in the delivery of informal science education: volunteers, predominantly adult women and mothers, in community settings beyond typical science environments. New volunteers participate in science inquiry at Girl Scout recruiting events and in their ongoing support meetings, and also receive training through a project-developed curriculum adapted from the NSF-funded Fundamentals of Inquiry. These classes engage volunteers (who may not be science content specialists) in direct experiences with inquiry, and teach them specific skills to help youth plan, carry out, and synthesize learning from inquiry investigations. Science inquiry processes are seamlessly integrated into broader lessons about implementing Girl Scout programming, thus positioning scientific inquiry as a normal, expected part of Girl Scouting. This sustainable, replicable model enables community youth programs to build volunteers' skills to support inquiry, while at the same time increasing the organizational capacity to sustain quality science programming. Three Girl Scout councils are currently replicating the project, and their experiences will inform the final designs of the curriculum and supporting documentation. The project's mixed-methods evaluation is being conducted by Evaluation & Research Associates.
DATE: -
TEAM MEMBERS: Jennifer Sorensen Stephanie Lingwood
resource project Public Programs
The Institute for Learning Innovation, Inc., requests $264,904 to pilot a project for establishing a national program to provide parents and significant other adults with support, training and materials. Also, the project goals will enable parents and other adults to become actively engaged in local science education reform and science literacy for their children. The duration of this project is eighteen months. The cost sharing for this NSF award is 24.6% of the total projected cost of the project. The Institute for Learning Innovation, Inc. will collaborate with the YWCA of Annapolis and Anne Arundel County, Boys and Girls Club of Annapolis and the Arundel County Public Schools' Family Involvement Center. Project "ASK with Science" will develop a model program for implementing and disseminating science education materials to young children in underserved communities, thereby creating a grassroots, family-oriented program that can become established in the local communities served by these organizations.
DATE: -
TEAM MEMBERS: Lynn Dierking
resource project Public Programs
This project plans to develop a partnership with KCTS Public Television, Laubach Literacy Action, and the National Alliance of Urban Literacy Coalitions to develop an implementation plan to promote higher science literacy in at-risk families in inner city settings. These organizations reach families that seldom participate in formal and informal science learning programs. A training design for literacy providers to use science literacy materials as an integrated part of their adult literacy curriculum will be developed. Video and print materials that are specifically designed for low literacy adults will be developed. These are expected to be simple, fun, and effective ways to foster the love of science and learning in themselves and their children. Front-end evaluation focus groups will be conducted with providers and parents to gain insights into the specific needs and general expectations of the parents and literacy providers, and to get feedback on the proposed project materials.
DATE: -
TEAM MEMBERS: James Burrows Kathleen Burrows
resource project Public Programs
In the mid-1980's, Denver Audubon Society developed a model Urban Education Project. The Project engages thousands of 8-12 year olds and trained volunteers in hands-on investigations of neighborhood plants, animals, and ecological relationships each year. With NSF support, we have helped seven other cities establish similar projects and have proven that the project model is highly successful and adaptable. This proposal requests funds to develop a kit of strategies and materials that will enable us to further disseminate the model in a time-and cost-efficient manner. The dissemination kit will be tested as experienced project leaders from established projects help eight new cities start local projects. Their feedback will direct us in revising the kits. By 1993, the completed dissemination kits will give experienced project leaders the tools necessary to help parents, informal education institutions, and concerned citizens across the country establish similar ecology education projects in their communities.
DATE: -
TEAM MEMBERS: Karen Hollweg
resource project Public Programs
The Franklin Institute Science Museum will, over a three year period, develop a regional Girl Scout leader training programthat provides science education experiences for Girl Scouts. The Girl Scout Council of Greater Philadelphia and the Washington Rock, NJ Council will be primary partners and the source of volunteer leaders and the target audience of member girls. Science Education kits will be developed and tested for Brownies and Juniors, training materials for staff trainers and volunteer leaders developed, leaders trained, and several post.training support mechanisms developed. Program materials are designed for continued use by the Girl Scouts; more than 2,000 leaders will be trained and 20,000 girls will participate in project activities during the three year period. This project is directed at the substantial under representation of women in many science and engineering fields by working with girls in informal settings to overcome patterns of science and mathematics avoidance. Replication and dissemination will be undertaken both within the Girl Scout Council system and among museums, youth organizations, and other informal educators. The proposers are contributing nearly $250,000 in resources to the project; NSF support will be 55% of the project total.
DATE: -
TEAM MEMBERS: Dale McCreedy