Skip to main content

Community Repository Search Results

resource research Public Programs
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Andrew Coy Foad Hamidi
resource research Informal/Formal Connections
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian Zahra Hazari Philip Sadler Gerhard Sonnert
resource research Public Programs
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS: Jill Castek Michelle Schira Hagerman Rebecca Woodland
resource research Public Programs
This video captures the energy and potetial of the Designing our Tomorrow project. It is intended to complement presentations and posters about Designing our Tomorrow. The Designing Our Tomorrow project aims to develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. Designing our Tomorrow seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices
DATE:
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource project Exhibitions
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The Designing Our Tomorrow project will develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. The project seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices. The project focuses on girls aged 9-14 and their families and is co-developed with culturally responsive strategies to ensure the inclusion and influence of families from Latino communities. The project will conduct research resulting in theory-based measures of engineering proficiencies within an exhibit context and an exhibit facilitation model for the topic area of engineering. Based on the research, the project will develop an engineering design challenge framework for developing design challenges within an exhibit context. As the context for research, the project will develop a bilingual English/Spanish 2,000-square foot traveling exhibition designed to engage youth and families in engineering design challenges that advance their engineering proficiencies from beginner to more informed, supported by professional development modules and a host-site training workshop introducing strategies for facilitating family engineering experiences within a traveling exhibition. The project is a collaboration of Oregon Museum of Science and Industry with the Biomimicry Institute, Adelante Mujeres, and the Fleet Science Center.

Designing Our Tomorrow builds on a theory-based engineering teaching framework and several previous NSF-funded informal education projects to engage families in compelling design challenges presented through the lens of sustainable design exemplified by biomimicry. Through culturally-responsive co-development and research strategies to include members of Latino communities and provide challenges that highlight the altruistic, creative, personally relevant, and collaborative aspects of engineering, the Designing Our Tomorrow exhibition showcases engineering as an appealing career option for women and helps families support each other's engineering proficiencies. To better understand and promote engineering learning in an ISE setting, the project will conduct two research studies to inform and iteratively develop effective strategies. In the first study, measurement development will build on prior research and practice to design credible and reliable measures of engineering proficiency, awareness, and collaboration, as well as protocols for use in exhibit development and the study of facilitation at engineering exhibits, and future research. The second study will explore the effects of facilitation on the experience outcomes.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marcie Benne Verónika Núñez
resource research Summer and Extended Camps
Increased emphasis on K-12 engineering education, including the advent and incorporation of NGSS in many curricula, has spurred the need for increased engineering learning opportunities for younger students. This is particularly true for students from underrepresented minority populations or economically disadvantaged schools, who traditionally lag their peers in the pursuit of STEM majors or careers. To address this deficit, we have created the Hk Maker Lab, a summer program for New York City high school students that introduces them to biomedical engineering design. The students learn the
DATE:
TEAM MEMBERS: Aaron Matthew Kyle Michael Carapezza Christine Kovich
resource project Public Programs
Designing for Diversity will establish a national Networked Improvement Community (NIC) of maker spaces and fab labs serving Black and Latino high school students and specializing in computational making programs. The project will be led by the New York Hall of Science, the Carnegie Foundation for the Advancement of Teaching and a national leadership team representing universities, cultural organizations, corporations, foundations and leaders in the Maker Movement. Using a NIC methodology, the partners will identify the most promising mechanisms for ensuring that participation in computational making programs has a significant impact on participants' choices to pursue STEM focused internships, post-secondary education, and career paths. The project will extend the NIC methodology into the informal learning community, which is in need of research methods that are both rigorous and accommodating of the institutional complexities of building and sustaining high-quality informal learning environments, and it will contribute to the literature on the impact of maker spaces and fab labs in underserved communities on the diversification of the STEM pipeline. The project will also pave the way for the development of a more fully-developed network of computational making programs across the country and a more comprehensive research initiative that will influence best practices in maker spaces and fab labs and foster perceptions of the value and impact of maker experiences on young people's readiness for future educational experiences and careers.

The project builds on research indicating that computational making - programs that combine the making of artifacts with computational tools and techniques - is a powerful strategy for engaging underrepresented students in STEM learning. However, participation in such programs will not necessarily lead students to take concrete steps toward computationally-rich STEM careers in which they are currently under-represented. A range of research suggests that computational making programs need to explicitly design for and address the socio-emotional dimensions of these learning experiences in order for them to become stepping stones into these careers. Designing for Diversity will work with a network of maker programs serving high needs Black and Latino high school students to address these learning factors. During this pilot, the leadership team will accomplish three tasks: (1) establish a common framework, shared measurement objectives and guidelines that will be used to identify, recruit and support participant maker programs and their local partners; (2) develop and coordinate the NIC's capacity for scaling and disseminating its work by connecting the research efforts to broader national initiatives; and (3) recruit, train, and collect baseline data on the Designing for Diversity NIC.
DATE: -
TEAM MEMBERS: Margaret Honey Katherine McMillan Paul LeMahieu Andres Henriquez
resource research Public Programs
This paper introduces an ongoing research project on the use of electronics workshops in engaging underprivileged Latino middle and high school students in STEM – Science, Technology, Engineering and Mathematics. The project focuses on the practice of circuit bending – taking apart and creatively manipulating the circuits of children's toys to produce novel sound output. The main goal of the project is to design, develop and test curricula and materials that inspire learning in adolescents. Second hand, discarded or low cost electronics are used in the workshops as a low cost platform for
DATE:
TEAM MEMBERS: Garnet Hertz Gillian Hayes Amelia Guimarin
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately, few youth from under-represented populations have had the opportunity to participate in these maker spaces, and many communities do not have the resources to establish facilities dedicated to making activities. This project, a collaboration of faculty at California State University, San Marcos and San Diego County Office of Education, the Vista Unified School District, and the San Diego Fab Lab, is a feasibility study that will work to address these needs by implementing and evaluating a pilot Mobile Making program in an underserved youth population. It will bring Making to four after-school programs in underserved communities in San Diego by using a van to take both equipment and undergraduate student mentors to program sites. At these sites, between 50% and 90% of the students are Hispanic or Latino and between 40% and 90% are eligible for free or reduced price lunch. The project employs a research-based approach to the design and implementation of the Mobile Making program, coupled with an evidenced-based plan for developing a model for future dissemination. Project objectives are: increasing the participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life; identifying and overcoming challenges associated with a Mobile Making program; developing a model for implementing and assessing Mobile Making in underserved communities; and disseminating materials and guides for practitioners. Development will be guided by five research-based principles for design of out-of-school time programs in underserved communities: access to resources; ethnically diverse near-peer leaders; authentic activities; legitimacy within the community; and ongoing input from participants. To inform program development and implementation, including continuous monitoring and adjustment throughout the two-year initiative, the evaluation component will use a mixed methods approach to study outcomes with respect to the students, their parents and the undergraduate mentors. Future work will apply the lessons learned in the project to guide implementations and study the model's applicability in other informal education settings. The dissemination plan will include publication of project findings, activities, practitioner's guides, and the model for implementing making programs in underserved communities.
DATE: -
TEAM MEMBERS: Edward Price Charles de Leone