Skip to main content

Community Repository Search Results

resource research Public Programs
The maker movement has evoked interest for its role in breaking down barriers to STEM learning. However, few empirical studies document how youth are supported over time, in STEM-rich making projects or their outcomes. This longitudinal critical ethnographic study traces the development of 41 youth maker projects in two community-centered making programs. Building a conceptual argument for an equity-oriented culture of making, the authors discuss the ways in which making with and in community opened opportunities for youth to project their communities’ rich culture knowledge and wisdom onto
DATE:
resource research Public Programs
In this paper we investigated the role youth participatory ethnography played as a pedagogical approach to supporting youth in making. To do so, we examined in-depth cases of youth makers from traditionally marginalized communities in two makerspace clubs in two different mid-sized US cities over the course of three years. Drawing from mobilities of learning studies and participatory frameworks, our findings indicate that participatory ethnography as pedagogical practice repositioned youth and making by helping to foreground youths’ relationality to people, communities, activities and
DATE:
resource project Public Programs
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.

The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
DATE: -
TEAM MEMBERS: Sarah Lee Vemitra White
resource project Professional Development, Conferences, and Networks
Jobs are growing most rapidly in areas that require STEM knowledge, causing business leaders to seek skilled American workers now and in the near future. Increase in the number of students pursuing engineering degrees is taking place but the percentages of underrepresented students in the engineering pipeline remains low. To address the challenge of increasing the participation of underrepresented groups in engineering, the National Society of Black Engineers, the American Indian Science and Engineering Society, the Society of Hispanic Professional Engineers, and the Society of Women Engineers have formed the 50K Coalition, a collaborative of over 40 organizations committed to increasing the number of bachelors degrees awarded to women and minorities from 30,000 annually to 50,000 by 2025, a 66% increase. The 50K Coalition is using the Collective Impact framework to develop an evidence-based approach that drives management decision-making, improvements, sharing of information, and collective action to achieve success. The first convening of the 50K Coalition in April, 2016, brought together 83 leaders of the engineering community representing 13 professional societies with over 700,000 members, deans of engineering, minority engineering and women in engineering administrators from 11 leading colleges of engineering, and corporate partners representing six global industries. Consensus was reached on the following Common Agenda items: 1.) Undergraduate support and retention; 2.) Public awareness and marketing; 3.) K-12 support; 4.) Community College linkages; 5.) Culture and climate. The Coalition will encourage member organizations to develop new programs and scale existing programs to reach the goal.

The Coalition will use shared metrics to track progress: AP® Calculus completion and high school graduation rates; undergraduate freshmen retention rates; community college transfer rates and number of engineering degrees awarded. The 50K Coalition will develop the other elements of the Collective Impact framework: Infrastructure and effective decision-making processes that will become the backbone organization with a focus on data management, communications and dissemination; a system of continuous communication including Basecamp, website, the annual Engineering Scorecard, WebEx hosted meetings and convenings; and mutually reinforcing activities such as programs, courses, seminars, webinars, workshops, promotional campaigns, policy initiatives, and institutional capacity building efforts. The National Academy of Sciences study, Expanding Underrepresented Minority Participation: America's Science and Technology Talent at the Crossroads recommended that professional associations make recruitment and retention of underrepresented groups an organizational goal and implement programs designed to reach that goal by working with their membership, academic institutions and funding agencies on new initiatives. While these types of organizations work together now in a variety of ways, the relationships are one-on-one. The 50K Coalition brings together, for the first time professional societies, engineering schools, and industry to consider what mutually reinforcing activities can most effectively encourage students from underrepresented groups to complete calculus and graduate from 4-year engineering programs.
DATE: -
TEAM MEMBERS: Karl Reid Barry Cordero Sarah Ecohawk Karen Horting
resource project Media and Technology
Part I

Although major growth in engineering and computing jobs is expected in the next 10 years, students are not majoring in sufficient numbers to meet this demand. These impending workforce demands cannot be met without developing the skills of racial and ethnic minorities: however, Hispanics and Black/African Americans make up only a small percentage of doctoral students in the United States. The goal of the Consortium of Minority Doctoral Scholars (CMDS) Design and Development Launch Pilot is to broaden the participation of minorities in these fields. This pilot project will create a data portal that will allow the research team to study and understand the efficacy of various mentoring strategies that might be piloted across institutions and minority doctoral scholars programs.

Part II

The Consortium of Minority Doctoral Scholars (CMDS) will unite three of the nation's oldest and most prominent minority doctoral scholars programs (GEM, SREB and McKnight); organizations with a long history of impact in increasing the numbers of minorities obtaining advanced degrees. The CMDS Design and Development Launch Pilot will conduct extensive studies using data from these three programs. The research team will conduct a mixed method analysis of the data to discover commonalities and distinctions about the three programs' mentoring efforts as compared to students not involved in the three programs. This will result in a data-driven strategy for researching the efficacy of mentoring programs that can be applied across the three CMSD member and other minority doctoral scholars programs. By utilizing data from successful programs to pinpoint effective mentoring strategies, the project will create opportunities for larger numbers of minorities to be successful. This approach has implications not only with respect to equity and access, but also the development of a workforce that will drive future advances.
DATE: -
TEAM MEMBERS: Juan Gilbert Shaundra Daily Jerlando Jackson
resource project Public Programs
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.

The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE: -
TEAM MEMBERS: Jumoke Ladeji-Osias Cindy Ziker Geneva Haertel Kamal Ali Ayanna Gill Derrick Gilmore Clay Gloster
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
DATE:
TEAM MEMBERS: Marjorie Bequette
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately few youth from under-represented populations have had the opportunity to participate in these maker spaces. This proof-of-concept project, a collaboration of faculty from Michigan State University and the University of North Carolina, Greensboro with staff of the Boys and Girls Clubs in Lansing and Greensboro, will address two challenges faced by middle school youth from backgrounds underrepresented in engineering professions: 1) a lack of opportunities to learn engineering meaningfully and to apply it to understanding and solving real-world problems (i.e. learning), and 2) few experiences that foster the ability to see oneself as an important, contributing producer and consumer of engineering (i.e. identity). The team will develop and study an informal (out-of-school) STEM learning model to engage middle school youth from underrepresented backgrounds in experiences related to engineering-for-sustainable-communities. The model engages youth both in maker spaces and in conducting community ethnography studies to identify local problems and then to design potential solutions for them. The participants will also be connected into a broader social network of experts. Using a design-based research approach and applying social practice theory and systems theory, the work will identify how critical aspects of the learning environment shape identity work. This will yield information on the value and affect of the instructional tools that will be produced. The team hypothesizes that, by alternating over time between maker spaces activities and community ethnography studies, youth will a) reflect upon what they know and need to know to define problems and design solutions, b) develop stronger engineering identities, and c) realize the potential they have to make change in their community. Professionals in education and engineering will benefit from additional empirical evidence for how identity unfolds over time, across learning contexts, and how it promotes opportunities to learn in engineering.
DATE: -
resource project Public Programs
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
DATE: -
TEAM MEMBERS: Linda Kekelis
resource project Public Programs
Making Connections, a three-year design-based research study conducted by the Science Museum of Minnesota in partnership with Twin Cities' communities, is developing and studying new ways to engage a broader audience in meaningful Maker experiences. This study draws and builds on existing theoretical frameworks to examine how community engagement techniques can be used to co-design and implement culturally-relevant marketing, activities, and events focused on Making that attract families from underrepresented audiences and ultimately engage them in meaningful informal STEM learning. The research is being done in three phases: Sharing and Listening - co-design with targeted communities; Making Activities Design and Implementation; Final Analysis, Synthesis and Dissemination. The project is also exploring new approaches in museums' cross-institutional practices that can strengthen the quality of their community-engagement. In recent years, Making - a do-it-yourself, grassroots approach to designing and constructing real things through creativity, problem-solving, and tool use - has received increasing attention as a fruitful vehicle for introducing young people to the excitement of science and engineering and to career skills in these fields. Maker Faires attract hundreds and thousands of people to engage in Making activities every year, and the popularity of these events, as well as the number of museums and libraries that are beginning to provide opportunities for the public to regularly engage in these types of activities, are skyrocketing. However, Maker programs tend to draw audiences that are predominantly white, middle class, male, well educated, and strongly interested in science, despite the fact that the practices of Making are as common in more diverse communities. Making Connections has the potential to transform how children begin to cultivate a lifelong interest in engineering at a young age, which may ultimately encourage more young people of color to pursue engineering careers in the future.
DATE: -