Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The goal of FLIP (Diversifying Future Leadership in the Professoriate), an NSF INCLUDES Design and Development Launch Pilot, is to address the broadening participation challenge of increasing the diversity of the future leadership in the professoriate in computing at research universities as a way to achieve diversity across the field. According to the 2016 CRA Taulbee Survey, only 4.3% of the tenure-track faculty at PhD-granting universities are from underrepresented minorities. This challenge is important to address because diverse faculty contributes to academia in the following critical ways: serve as excellent role models for a diverse study body, bring diverse backgrounds to the student programs and policies developed by the department, and bring diverse perspectives to the research projects and programs. Further, the focus is on research universities, because in practice, key national leadership roles, such as serving on national committees that impact thefield of computing, often come from research universities.

The shared purpose and broad vision of the FLIP launch pilot is to increase faculty diversity in computing at research universities by increasing the diversity of PhD graduates from the top producers of computing faculty. The focus is on four underrepresented groups in computing: African Americans; Hispanics; Native Americans and indigenous peoples; and Persons with Disabilities. The long-term goal is to pursue this vision through strategic partnerships with those institutions that are the top producers of computing faculty and organizations that focus on diverse students in STEM, as well as partnerships that collectively adopt proven strategies for recruiting, graduating, and preparing a diverse set of doctoral students for academic careers. The purpose of the pilot is to establish a unified approach across the different partners that will build upon proven strategies to develop novel practices for increasing the diversity of the PhD graduates from key institutions, thereby increasing the faculty diversity in computing at research universities. For the pilot, FLIP will focus on recruitment and admissions and professional development for current PhD students.
DATE: -
TEAM MEMBERS: Valerie Taylor Charles Isbell Jeffrey Forbes University of Chicago
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Making and Tinkering Programs
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.

ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE: -
TEAM MEMBERS: Shaik Jeelani Bruce Crawford Mohammed Qazi Jeffrey Gray Jacqueline Brooks
resource research Informal/Formal Connections
Dr. Ann Chester, Director of the Health Sciences and Technology Academy (HSTA) in West Virginia was looking for professional researchers interested in working with HSTA's high school-aged participants through community-based participatory research (CBPR) projects. Dr. Alicia Zbehlik, with the Dartmouth Institute for Health Policy & Clinical Practice in New Hampshire, needed to further her research in knee osteoarthritis to support a pilot intervention in her target population. The two met, saw potential benefits to both organizations in forming a partnership, and agreed to undertake a one-year
DATE:
TEAM MEMBERS: Paul Luis Siciliano Bethany L. Hornbeck Sara Hanks Summer L. Kuhn Alicia J. Zbehlik Ann L. Chester
resource research Summer and Extended Camps
Increased emphasis on K-12 engineering education, including the advent and incorporation of NGSS in many curricula, has spurred the need for increased engineering learning opportunities for younger students. This is particularly true for students from underrepresented minority populations or economically disadvantaged schools, who traditionally lag their peers in the pursuit of STEM majors or careers. To address this deficit, we have created the Hk Maker Lab, a summer program for New York City high school students that introduces them to biomedical engineering design. The students learn the
DATE:
TEAM MEMBERS: Aaron Matthew Kyle Michael Carapezza Christine Kovich
resource research Media and Technology
This article explores science communication from the perspective of those most at risk of exclusion, drawing on ethnographic fieldwork. I conducted five focus groups and 32 interviews with participants from low-income, minority ethnic backgrounds. Using theories of social reproduction and social justice, I argue that participation in science communication is marked by structural inequalities (particularly ethnicity and class) in two ways. First, participants’ involvement in science communication practices was narrow (limited to science media consumption). Second, their experiences of exclusion
DATE:
TEAM MEMBERS: emily dawson
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Scott Calabrese Barton Edna Tan
resource project Professional Development, Conferences, and Networks
This INCLUDES award to the Quality Education for Minorities (QEM) Network will focus on building STEM research and teaching capacity of Historically Black Colleges and Universities (HBCUs) and Tribal Colleges and Universities (TCUs). HBCUs and TCUs share the impact of disparities that affect their communities and are constantly seeking STEM research and education solutions to engage students and prepare them to be fully involved in developing innovative and effective remedies that will address these disparities. The QEM Design & Development Launch Pilot (DDLP) Project is a collaboration that will provide an underpinning for broadening the participation of institutions involved in improving the enrollment and retention of minority students in science, technology, engineering, and mathematics (STEM). To be competitive in a future global economy, the Nation must make a larger investment in the STEM education of its underrepresented groups, including, males and persons with disabilities. Failure to make such an investment can weaken our STEM infrastructure and inhibit the continuity of the Nation as a world leader in STEM.

The project's initial partners consist of five HBCUs (Morehouse College, Morgan State University, Spelman College, Tuskegee University, and University of Maryland Eastern Shore) and two TCUs (Aaniiih Nakoda College and United Tribes Technical College) with the aim of expanding to 12 institutions as well as adding business/industry partners and STEM-focused professional societies. The goals of the DDLP project are to: (1) build and sustain an alliance to increase the participation of African Americans and Native Americans in STEM education, research, and the workforce; (2) strengthen the STEM research, instructional, and mentoring capacities of partner HBCUs and TCUs; and (3) develop and promote broadening participation (BP) practices to address academic and professional career needs of African American and Native American males to significantly increase their representation in STEM. The QEM DDLP will implement evidence-based and data-driven approaches to developing research, education, and mentoring activities that can be tailored to institutional needs and context. The resulting outcome will be an increase in the capacities of HBCUs and TCUs in STEM that will position these institutions for sustained contributions to national broadening participation initiatives.
DATE: -
TEAM MEMBERS: Shirley McBay Leander McDonald Laura-Lee Davidson Eugene DeLoatch Juliette Bell
resource project Professional Development, Conferences, and Networks
This collaboration between two Historically Black Colleges and Universities (HBCUs) will form a networked improvement community located within the Piedmont Region of North Carolina. In close partnership with community colleges and civic organizations, the project will reach families and students that lead to broader participation of underrepresented groups in science, technology, engineering, and mathematics (STEM) fields. The overall goal is to build and sustain a scalable, inquiry-based network with the purpose of increasing the academic success of underrepresented ethnic minorities and women in the STEM continuum. By engaging in culturally relevant socio-environmental frameworks, project outcomes will positively impact student retention, knowledge, and quantitative skills in STEM across socio-economic divides and STEM disciplines.

The Launch Pilot phase will focus on evidence-based teaching and learning approaches for middle school students. The core structure of the network will serve as a platform to launch and guide other age- and level-specific educational instruction, research, and assessment initiatives. Student understanding of the nature of science will be enhanced by adapting structure, behavior, and function (SBF) theory and system thinking hierarchical (STH) models. Ultimately, the network will represent a driver for social innovation that positively impacts broadening participation in STEM.
DATE: -
TEAM MEMBERS: Gregory Goins Thomas Redd Scott Harrison Paula Faulkner Stephanie Luster-Teasley Caesar Jackson Tonya Gerald-Goins Christopher McGinn Kimberly Weems
resource project Media and Technology
Currently, many young people - especially girls and youth of color - lose confidence and interest in science, technology, engineering and math (STEM) pathways due to a perceived disconnect between their own identity and STEM fields. To address this challenge, Twin Cities PBS (TPT) is implementing SciGirls CONNECT2. This three-year Research in Service to Practice award examines how gender equitable and culturally responsive teaching strategies influence middle school girls' confidence, interest and motivation around STEM studies, and their choices around STEM careers. A set of research-based strategies, called the SciGirls Seven, are currently employed in SciGirls, an NSF-funded informal STEM educational outreach program serving 125+ educational partner organizations nationwide. The goal is to update and enrich the SciGirls Seven, providing educators with a critical, current, and more effective resource to motivate girls in STEM studies and careers. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

Florida State University will conduct a formal research study investigating the hypothesis that STEM programs that use gender equitable and culturally responsive strategies contribute to girls' positive STEM identity development, including their sense of self-efficacy, persistence and aspirations around future STEM careers. This research will include a literature review and a study of girls' STEM identity creation. The mixed methods study will include quantitative and qualitative data collection and analysis measuring changes in students' STEM identity and teachers' confidence in STEM teaching. The quantitative data will come from the student, parent and teacher pre/post surveys. The qualitative research will be conducted via case studies at four sites and the qualitative data will include observations, focus groups and interviews. Girls at all partner sites will create videos that will allow the research team to gather additional insight. The independent firm Knight Williams, Inc. will conduct the project's external evaluation.

The project will work with a subset of 16 current SciGirls partners. These geographically diverse partners will reach youth in all-girls and co-ed informal STEM education programs in a variety of settings. More than half serve Hispanic or other minority populations. The updated strategies will be disseminated to the 2,500 educators within the SciGirls partner network and the 18,800 STEM education organizations of the National Girls Collaborative Project (NGCP) network. Dissemination of the strategies and literature review will focus on the informal STEM education field through publications and presentations, posts at PBS LearningMedia, a free online space reaching 1.5 million teachers and educators.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Roxanne Hughes Alicia Santiago
resource research Media and Technology
NASA’s Science Mission Directorate (SMD) explores the Earth, the Sun, our solar system, the galaxy and beyond through four SMD divisions: Earth Science, Heliophysics, Planetary Science and Astrophysics. Alongside NASA scientists, teams of education and public outreach (EPO) specialists develop and implement programs and resources that are designed to inspire and educate students, teachers, and the public about NASA science.
DATE:
TEAM MEMBERS: Nancy Alima Ali Bonnie Meinke