This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.
This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
The Council for Opportunity in Education, in collaboration with TERC, seeks to advance the understanding of social and cultural factors that increase retention of women of color in computing; and implement and evaluate a mentoring and networking intervention for undergraduate women of color based on the project's research findings. Computing is unique because it ranks as one of the STEM fields that are least populated by women of color, and because while representation of women of color is increasing in nearly every other STEM field, it is currently decreasing in computing - even as national job prospects in technology fields increase. The project staff will conduct an extensive study of programs that have successfully served women of color in the computing fields and will conduct formal interviews with 15 professional women of color who have thrived in computing to learn about their educational strategies. Based on those findings, the project staff will develop and assess a small-scale intervention that will be modeled on the practices of mentoring and networking which have been established as effective among women of color who are students of STEM disciplines. By partnering with Broadening Participation in Computing Alliances and local and national organizations dedicated to diversifying computing, project staff will identify both women of color undergraduates to participate in the intervention and professionals who can serve as mentors to the undergraduates in the intervention phase of the project. Assisting the researchers will be a distinguished Advisory Board that provides expertise in broadening the representation of women of color in STEM education. The external evaluator will provide formative and summative assessments of the project's case study data and narratives data using methods of study analysis and narrative inquiry and will lead the formative and summative evaluation of the intervention using a mixed methods approach. The intervention evaluation will focus on three variables: 1) students' attitudes toward computer science, 2) their persistence in computer science and 3) their participant attitudes toward, and experiences in, the intervention.
This project extends the PIs' previous NSF-funded work on factors that impact the success of women of color in STEM. The project will contribute an improved understanding of the complex challenges that women of color encounter in computing. It will also illuminate individual and programmatic strategies that enable them to participate more fully and in greater numbers. The ultimate broader impact of the project should be a proven, scalable model for reversing the downward trend in the rates at which women of color earn bachelor's degrees in computer science.
Counterspaces in science, technology, engineering, and mathematics (STEM) are often considered “safe spaces” at the margins for groups outside the mainstream of STEM education. The prevailing culture and structural manifestations in STEM have traditionally privileged norms of success that favor competitive, individualistic, and solitary practices—norms associated with White male scientists. This privilege extends to structures that govern learning and mark progress in STEM education that have marginalized groups that do not reflect the gender, race, or ethnicity conventionally associated with
AHA! Island is a new project that uses animation, live-action videos, and hands-on activities to support joint engagement of children and caregivers around computational thinking concepts and practices. This research is intended to examine the extent to which the prototyped media and activity sets support the project’s learning goals. Education Development Center (EDC), WGBH’s research partner for the project, conducted a small formative study with 16 English-speaking families (children and their caregivers) to test out these media and activity set prototypes. During the in-person video
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The project will research the educational impact of social robots in informal learning environments, with applications to how social robots can improve participation and engagement of middle-school girls in out-of-school computer science programs in under-resourced rural and urban areas. The use of robots to improve STEM outcomes has focused on having learners program robots as tools to accomplish tasks (e.g., play soccer). An alternate approach views robots as social actors that can respond intelligently to users. By designing a programmable robot with social characteristics, the project aims to create a culturally-responsive curriculum for Latina, African American, and Native American girls who have been excluded by approaches that separate technical skill and social interaction. The knowledge produced by this project related to the use and benefits of social programmable robots has the potential to impact the many after-school and weekend programs that attempt to engage learners in STEM ideas using programmable robot curricula.
The project robot, named Cozmo, will be programmed using a visual programming language and will convey emotion with facial expressions, sounds, and movements. Middle school girls will engage in programming activities, collaborative reflection, and interact with college women mentors trained to facilitate the course. The project will investigate whether the socially expressive Cozmo improves computer science outcomes such as attitudes, self-efficacy, and knowledge among the middle school female participants differently than the non-social version. The project will also investigate whether adding rapport-building dialogue to Cozmo enhances these outcomes (e.g., when a learner succeeds in getting Cozmo to move, Cozmo can celebrate, saying "I can move! You're amazing!"). These questions will be examined research conducted with participants in multi-session after-school courses facilitated by Girl Scout troops in Arizona. The project will disseminate project research and resources widely by sharing research findings in educational and learning science journals; creating a website with open source code for programming social robots; and making project curriculum and related guidelines available to Girl Scouts and other educational programs.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The goal of FLIP (Diversifying Future Leadership in the Professoriate), an NSF INCLUDES Design and Development Launch Pilot, is to address the broadening participation challenge of increasing the diversity of the future leadership in the professoriate in computing at research universities as a way to achieve diversity across the field. According to the 2016 CRA Taulbee Survey, only 4.3% of the tenure-track faculty at PhD-granting universities are from underrepresented minorities. This challenge is important to address because diverse faculty contributes to academia in the following critical ways: serve as excellent role models for a diverse study body, bring diverse backgrounds to the student programs and policies developed by the department, and bring diverse perspectives to the research projects and programs. Further, the focus is on research universities, because in practice, key national leadership roles, such as serving on national committees that impact thefield of computing, often come from research universities.
The shared purpose and broad vision of the FLIP launch pilot is to increase faculty diversity in computing at research universities by increasing the diversity of PhD graduates from the top producers of computing faculty. The focus is on four underrepresented groups in computing: African Americans; Hispanics; Native Americans and indigenous peoples; and Persons with Disabilities. The long-term goal is to pursue this vision through strategic partnerships with those institutions that are the top producers of computing faculty and organizations that focus on diverse students in STEM, as well as partnerships that collectively adopt proven strategies for recruiting, graduating, and preparing a diverse set of doctoral students for academic careers. The purpose of the pilot is to establish a unified approach across the different partners that will build upon proven strategies to develop novel practices for increasing the diversity of the PhD graduates from key institutions, thereby increasing the faculty diversity in computing at research universities. For the pilot, FLIP will focus on recruitment and admissions and professional development for current PhD students.
DATE:
-
TEAM MEMBERS:
Valerie TaylorCharles IsbellJeffrey ForbesUniversity of Chicago
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.
ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE:
-
TEAM MEMBERS:
Shaik JeelaniBruce CrawfordMohammed QaziJeffrey GrayJacqueline Brooks
The paper describes how middle school students appropriated and transformed a particular learning experience in an afterschool literacy program in Philadelphia. The learning experience was designed to ensure that urban African-American, middle school girls had access to technology and learned how to use it to create a web page that showcased future career aspirations. The program’s director enlisted the help of male, Caucasian high school students from the suburbs of Philadelphia to facilitate the technology learning experience for the middle school youth (both girls and boys were in the