This poster was presented at the 2021 NSF AISL Awardee Meeting.
Since 2006, the National High Magnetic Field Laboratory (MagLab) through the Center for Integrating Research and Learning (CIRL) has offered a SciGirls Summer Camp to introduce middle school girls to various fields of science. Code: SciGirls was created in 2017 to increase the engagement in computer science studies and career paths for girls. This consistent commitment to girls in STEM led the SciGirls creators at Twin Cities Public Television (TPT) to invite CIRL to be a partner with them. In the summer of 2021, CIRL & TPT
The University of South Carolina will develop and research an educational program in the Southeastern United States designed to recognize and foreground the scientific contributions of the descendants of West Africans and West Indians. Though these contributions have been vital to many scientific enterprises, including land stewardship and aquaponics, they have remained largely underappreciated in educational programs. To address this issue, this project will develop an informal science education program for youth from Gullah/Geechee communities whose ancestors were formerly enslaved West African and West Indian peoples. Across centuries, Gullah/Geechee people have developed historical and contemporary scientific, engineering, and technological practices that enabled the mastery of fishing and the cultivation of numerous crops across barrier islands and coastal cities from North Carolina to Florida. Guided by Gullah/Geechee scholars and community members, pre-service and in-service teachers will co-design culturally sustaining summer programs, which provide Gullah/Geechee youth with opportunities to engage in culturally-embedded scientific and engineering practices as they learn about numerous STEM (science, technology, engineering, and mathematics) career pathways related to these practices. The University of South Carolina will host these summer programs in partnership with the historic Penn Center, an African American historical and cultural institution, and in partnership with the Belle W. Baruch Institute for Marine and Coastal Sciences, a research organization dedicated to improving the management of marine and coastal resources. Researchers will study how the in-service and pre-service teachers enact pedagogies that sustain Gullah/Geechee cultural practices. They will also study how the Gullah/Geechee youth share their understandings of culturally-embedded scientific content through creating iMovies and through giving community presentations hosted by the Penn Center, Baruch Institute, and other community partners. This project will advance knowledge on broadening participation in STEM (science, technology, engineering, and mathematics) career pathways in informal settings through culturally sustaining pedagogies. This project will also advance partnerships through illuminating how different institutions and stakeholders?such as community leaders, cultural centers, university educator programs, and scientific research organizations can work together to support culturally-embedded learning across informal settings.
The University of South Carolina will conduct a mixed-method study grounded in principles of design-based research and community-based participatory research. Pre-service and in-service teachers from underrepresented groups will participate in an immersive two-year professional development experience during which they co-design and teach culturally sustaining summer programs with Gullah/Geechee scholars and leaders. In these programs, fifth- and sixth-grade Gullah/Geechee youth will engage in project-based learning by applying historical and contemporary scientific practices grounded in Gullah/Geechee cultures. Guided by cultural mentors, youth will engage in STEM practices similar to those of STEM professionals in the community. Researchers will study how the educators understand and apply culturally sustaining pedagogies by using constant comparative analytic methods to analyze transcripts from observations and interviews, as well as the educators' work materials (e.g., lesson plans). They will also study how the youth convey their understandings of culturally-embedded scientific content and practices by using constant comparative and multimodal analysis to analyze transcripts from interviews and observations, as well as youth-generated artifacts such as the iMovie. Additionally, pre- and post-tests will enable the research team to determine changes to the youths' understandings of scientific content and perceptions regarding participation in STEM enterprises and careers. Deliverables, such as youth-generated products, will be shared with local media and with relevant cultural centers, while empirical results will be widely disseminated through local and national conferences. This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts, and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers. This project is also co-funded by the Advanced Informal STEM Learning (AISL) program. As part of its overall strategy to enhance learning in informal environments, the AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The lack of equitable access to science learning for marginalized groups is now a significant concern in the science education community (Bell et al. 2009). In our commitment to addressing these concerns, we (the HERP Project staff) have spent four years exploring different ways to increase diverse student participation in our informal science programs called herpetology research experiences (HREs). We wanted the demographics of participants to mirror the racial, ethnic, cultural, linguistic, and socioeconomic demographics of the areas where our HREs are held. To achieve this, project staff
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.
The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.