Skip to main content

Community Repository Search Results

resource project Public Programs
The Lewis H. Latimer House Museum will develop a more cohesive education program that reflects both the museum's resources and the needs of local schools. The museum's deputy director and Tinkering Lab educator will work together to design a curriculum that meets current New York State and city standards, enabling the museum to more effectively serve schools in the community with object-based learning experiences. Packets of educational materials will be developed and made available for school teachers to download and use in their classrooms prior to and following visits to the museum. Target schools will be actively involved in the process of testing and utilizing the products. Project results will be shared with internal and external stakeholders to sustain long-term improvement and enhance institutional capacity.
DATE: -
TEAM MEMBERS: Ran Yan
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.

The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE: -
TEAM MEMBERS: Aristides Marcano Mohammed Khan Gulnihal Ozbay Gabriel Gwanmesia
resource research Public Programs
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
DATE:
resource research Public Programs
In the United States, African Americans are underrepresented in science careers and underserved in pre-collegiate science education. This project engaged African American elementary students in culturally relevant science education through archaeology and thereby increased positive dispositions toward science. While imagining what the lives of their ancestors were like, students practiced scientific inquiry and used natural sciences to analyze archaeological sites. The project helped to improve science literacy among African American elementary students through archaeological inquiry and
DATE:
TEAM MEMBERS: Michael Brody Joelle Clark Jeanne Moe
resource research Public Programs
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
DATE:
TEAM MEMBERS: Roxanne Hughes
resource project Public Programs
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
DATE: -
TEAM MEMBERS: Linda Kekelis