Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Since 2006, the National High Magnetic Field Laboratory (MagLab) through the Center for Integrating Research and Learning (CIRL) has offered a SciGirls Summer Camp to introduce middle school girls to various fields of science. Code: SciGirls was created in 2017 to increase the engagement in computer science studies and career paths for girls. This consistent commitment to girls in STEM led the SciGirls creators at Twin Cities Public Television (TPT) to invite CIRL to be a partner with them. In the summer of 2021, CIRL & TPT
DATE:
TEAM MEMBERS: Carlos Villa Rita Karl Brooke Hobbes A. Troy Roxanne Hughes
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
DATE:
TEAM MEMBERS: Ross Higashi
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. Youth Radio (YR) Media is a national network of journalists, designers, developers and artists ages 14-24 who create media and technology that address key social issues — including, since 2019, A.I. through an ethics and equity lens. Participants are primarily youth of color and those contending with economic and other barriers to full participation in STEM.
DATE:
TEAM MEMBERS: Lissa Soep
resource project Media and Technology
The Ice Worlds media project will inspire millions of children and adults to gain new knowledge about polar environments, the planet’s climate, and humanity’s place within Earth’s complex systems—supporting an informed, STEM literate citizenry. Featuring the NSF-funded THOR expedition to Thwaites glacier, along with contributions of many NSF-supported researchers worldwide, Ice Worlds will share the importance of investments in STEM with audiences in giant screen theaters, on television, online, and in other informal settings. Primary project deliverables include a giant screen film, a filmmaking workshop for Native American middle school students that will result in a documentary, a climate storytelling professional development program for informal educators, and a knowledge-building summative evaluation. The project’s largest target audience is middle school learners (ages 11-14); specific activities are designed for Native American youth and informal science practitioners. Innovative outreach will engage youth underserved in science inspiring a new generation of scientists and investigative thinkers. The project’s professional development programs will build the capacity of informal educators to engage communities and communicate science. The Ice Worlds project is a collaboration among media producers Giant Screen Films, Natural History New Zealand, PBS, and Academy Award nominated film directors (Yes/No Productions). Additional collaborators include Northwestern University, The American Indian Science and Engineering Society, the Native American Journalism Association, a group of museum and science center partners, and a team of advisors including scientific and Indigenous experts associated with the NSF-funded Study of Environmental Arctic Change initiative.

The goals of the project are: 1) to increase public understanding of the processes and consequences of environmental change in polar ecosystems, 2) to explore the effectiveness of the giant screen format to impart knowledge, inspire motivation and caring for nature, 3) to improve middle schoolers’ interest, confidence and engagement in STEM topics and pursuits—broadly and through a specific program for Native American youth, and 4) to build informal educators’ capacity to share stories of climate change in their communities. The main evaluation questions are 1) to what extent does the Ice World film affect learning, engagement, and motivation around STEM pursuits and environmental problem solving 2) what is the added value of companion media for youth’s giant screen learning over short and longer term, and 3) what are the impacts of the culturally based Native American youth workshops.

The evaluation work will involve a Native American youth advisory panel and a panel of science center practitioners in the giant screen film’s development and evaluation process. Formative evaluation of the film will involve recruiting youth from diverse backgrounds, including representation of Native youth, to see the film in the giant screen theater of a partner site. Post viewing surveys and group discussions will explore their experience of the film with respect to engagement, learning, evoking spatial presence, and motivational impact. A summative evaluation of the completed film will assess its immediate and longer term impacts. Statistical analyses will be conducted on all quantitative data generated from the evaluation, including a comparison of pre and post knowledge scores. An evaluation of the Tribal Youth Media program will include a significant period of formative evaluation and community engagement to align activities to the needs and interests of participating students. Culturally appropriate measures, qualitative methods and frameworks will be used to assess the learning impacts. Data will be analyzed to determine learning impacts of the workshop on youth participants as well as mentors and other stakeholder participants. Evaluation of the community climate storytelling professional development component will include lessons learned and recommendations for implementation.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood Patricia Loew
resource project Public Programs
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

Research shows that Black girls and women, regardless of their academic achievements and STEM interests, often encounter academic under-preparation, social isolation, exclusion, and race-gender discrimination that negatively impacts their ongoing engagement and retention in STEM. This project will provide innovative, culturally relevant learning environments to middle and high school Black girls to counter these negative trends. Using hands-on coding and robotics activities, project participants will develop positive attitudes toward science, technology, engineering, and mathematics (STEM). The project emphasizes peer-mentoring by providing opportunities for Black female high school (assistant coaches) and Black college students (coaches) to serve as counselors and mentors to participants. Additionally, engineers, scientists, and executives from STEM industries will serve as mentors and share their experiences to broaden participants’ STEM career aspirations. The project is a three-year collaborative effort between the University of California Davis C-STEM Center, the Umoja Community Education Foundation, and the 66 affiliated California community colleges, industry partners, and school districts in California. Over three years, nearly 2,000 females will participate in the project.

Learning environments for Black girls and women led by other Black girls and women are referred to as “counterspaces” where they are free to engage in STEM in ways that value their identities while promoting STEM engagement, interests, and career aspirations. The project’s curriculum will follow a research-based, culturally relevant multi-tiered mentoring approach. The curriculum is designed to develop participants’ STEM content knowledge, critical thinking, and logical reasoning capabilities through meaningful connections to real-life applications using hands-on coding and robotics. A mixed-method longitudinal study will examine the impact on participants’ STEM outcomes, emphasizing contributing new knowledge on the viability of multi-tiered, culturally relevant mentoring for increasing equity in informal STEM learning (ISL). The program's effectiveness will be evaluated using longitudinal assessments of mathematics standards, computer science and robotics conceptual knowledge, logical and critical thinking skills, STEM school achievements, interests and attitudes toward STEM subjects, advanced STEM course-taking, involvement in other ISL opportunities, and leadership in STEM in one’s school/university and community. The project will test a locally based informal learning model with projects hosted by other K-12 and college partners.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.
DATE: -
TEAM MEMBERS: Harry Cheng Faheemah Mustafaa
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tino Nyawelo John Matthews Jordan Gerton Sarah Braden
resource project Media and Technology
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.

The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.

This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Isbister
resource project Public Programs
Computing and computational thinking are integral to the practice of modern science, technology, engineering, and math (STEM); therefore, computational skills are essential for students' preparation to participate in computationally intensive STEM fields and the emerging workforce. In the U.S., Latinx and Spanish speaking students are underrepresented in computing and STEM fields, therefore, expanding opportunities for students to learn computing is an urgent need. The Georgia Institute of Technology and the University of Puerto Rico will collaborate on research and development that will provide Latinx and Spanish speaking students in the continental U.S. and Puerto Rico, opportunities to learn computer science and its application in solving problems in STEM fields. The project will use a creative approach to teaching computer science by engaging Latinx and Spanish speaking students in learning how to code and reprogram in a music platform, EarSketch. The culturally relevant educational practices of the curriculum, as a model for informal STEM learning, will enable students to code and reprogram music, including sounds relevant to their own cultures, community narratives, and cultural storytelling. Research results will inform education programs seeking to design culturally authentic activities for diverse populations as a means to broaden participation in integrated STEM and Computing. This Broad Implementation project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including multiple pathways for broadening access to and engagement in STEM learning, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

As part of the technical innovation of the project, the EarSketch platform will be redesigned for cultural and linguistic authenticity that will include incorporating traditional and contemporary Latin sound beats and musical samples into the software so that students can remix music and learn coding using sounds relevant to their cultures; and developing a Spanish version of the platform, with a toggle to easily switch between English and Spanish. Investigators will also develop an informal STEM curriculum using best practices from Culturally Relevant Education and Cultural Sustaining Pedagogy that provides authentic, culturally and linguistically rich opportunities for student engagement by establishing direct and constant connections to their cultures, communities and lived experiences. The curriculum design and implementation team will work collaboratively with members of Latinx diverse cultural groups to ensure semantic and content equivalency across diverse students and sites. Validating the intervention across students and sites is one of the goals of the project. The model curriculum for informal learning will be implemented as a semester long afterschool program in six schools per year in Atlanta and Puerto Rico, and as a one-week summer camp twice in the summer. The curricular materials will be broadly disseminated, and training will be provided to informal learning practitioners as part of the project. The research will explore differences in musical and computational engagement; the interconnection between music and the computational aspects of EarSketch; and the degree to which the program promotes cultural engagement among culturally and linguistically heterogenous groups of Latinx students in Atlanta, and more culturally and linguistically homogenous Latinx students in Puerto Rico. Investigators will use a mixed method design to collect data from surveys, interviews, focus groups, and computational/musical artifacts created by students. The study will employ multiple case study methodology to analyze and compare the implementation of the critical components of the program in Puerto Rico and Atlanta, and to explore differences in students' musical and computational thinking practices in the two regions. Results from the research will determine the impact of the curriculum on computer science skills and associated computational practices; and contribute to the understanding of the role of cultural engagement on educational outcomes such as sense of belonging, persistence, computational thinking, programming content knowledge and computer science identity. Results will inform education programs designing culturally authentic and engaging programming for diverse populations of Latinx youths.
DATE: -
TEAM MEMBERS: Diley Hernandez Jason Freeman Douglas Edwards Rafael Arce-Nazario Joseph Carroll-Miranda
resource project Media and Technology
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. COVID-19 presents a national threat to the health of children and families, presenting serious implications for the mental and physical health of children. Child development scientists have already warned of increasing stress levels among the U.S. child population, especially those in low-income families of color. In addition, Latino children are disproportionately impoverished, and benefit from culturally relevant information. Parents and caregivers need to be armed with effective science-based strategies to improve child prospects during this global crisis. Harnessing well-established partnership (including with local TV news partners and parent-serving organizations) strengthens the potential for broad impacts on the health and well-being of children and families during the COVID-19 pandemic. As the pandemic persists, widely disseminating accurate research-based strategies to support parents and families, with a focus on low-income Latino parents, is crucial to meeting the needs of the nation's most vulnerable during this global crisis. The award addresses this urgent need by producing research-based news videos on child development for distribution on broadcast television stations that reach low income Latino parents. The videos will communicate research-based recommendations regarding COVID-19 in ways that are relatable to Latino parents and lead to positive parenting during this pandemic. A "how to" video will also be produced showing parents how to implement some of the practices. Project partners include Abriendo Puertas, the largest U.S. parenting program serving low-income Latinos, and Ivanhoe Broadcasting.

Research questions include: 1) What information do parents need (and potentially what misinformation they are being exposed to)? 2) What are they sharing? 3) How does this vary geographically? 4) Can researchers detect differences in public engagement in geographic areas where TV stations air news videos as compared to areas that don't? This project will use data and communication science research strategies (e.g. natural language processing from online sites where parents are asking questions and sharing information) to inform the content of the videos and lead to the adoption of featured behaviors. Data from web searches, public Facebook pages, and Twitter posts will be used to gain a window into parents' main questions and concerns including information regarding hygiene, how to talk about the pandemic without frightening their children, or determining veracity of what they hear and see related to the pandemic.

This organic approach can detect concerns that parents may be unlikely to ask doctors or discuss in focus groups. Methodologically, the researchers will accomplish this by natural language analysis of the topics that parents raise; the words and phrases they use to talk about specific content; and any references to external sources of information. Where possible, the researchers will segment this analysis by geography to see if there are geographical differences in information needs and discourse. A research brief will share new knowledge gained with the field on how to respond to national emergencies, such as the COVID-19 pandemic, using local TV news and reinforcement of messages across contexts. The findings from this award will provide a knowledge base that can be utilized to better inform responses to national emergencies in the future. By broadly disseminating these findings through a research brief, the project?s innovative research will advance the field of communication science.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Alicia Torres
resource project Public Programs
African American and Latinx youth are often socialized towards athletic activity and sports participation, sometimes at the expense of their exploration of the range of potential career paths including those in the science, technology, engineering, and mathematics (STEM) fields. This project will immerse middle school youth in the rapidly growing world of sports data analytics and build their knowledge of statistics concepts and the data science process. The project will focus on the STEM interests and knowledge development of African American and Latinx youth, an underrepresented and underserved group in STEM. Researchers will explore the ways youths' social identities can and should serve as bridges towards future productive academic and professional identities including those associated with STEM learning and the STEM professions. The outcomes of the project will advance knowledge in promoting elements of informal learning experiences that build adolescents' motivation and persistence for productive participation in STEM courses and careers. This project is funded by the Advancing Informal STEM Learning program (AISL), which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments, and the Innovative Technology Experiences for Students and Teachers program (ITEST), which funds projects that leverage innovative uses of technologies to prepare diverse youth for the STEM workforce, with a focus on broadening participation among underrepresented and underserved groups in STEM fields.

Over a three-year period, 250 middle school learners in the West Baltimore, Maryland and Hyattsville, Maryland areas will engage in three main learning activities: Summer Camp (three weeks), Sports Day Saturdays, and a Spring Summit. Through a partnership between the University of Maryland and Coppin State University, the project will utilize resources in multiple departments and units across both universities, and engage with youth sports leagues such as the American Athletic Union (AAU) to support participants' engagement in the data science process including collection of raw data, exploration of data, development of models, visualization, communication, and reporting of data, and data-driven decision making. Furthermore, youth participants will attend local AAU, college, and professional sporting events, and interact with members of coaching staffs to better understand the ways performance data technologies are utilized to inform recruitment and team performance. The mixed-methods research agenda for this project is guided by three main questions: (1) What elements of the project's model are most successful at supporting congruence of adolescents' academic identity, including STEM identity and social identity including athletic identity? (2) What elements support adolescents' motivation, and persistence for productive participation in current and future STEM courses? (3) To what extent did the project appear to influence participants' perceptions of their future professions? At multiple points throughout the experience, participants will complete surveys designed to document and assess statistics and data science knowledge; interest in STEM careers; academic, social and athletic identity development; and STEM course taking patterns. Researchers will also observe project activities, interview a focal group of participants, and survey participants' parents to identify elements of learning experiences that encourage and support adolescents' interest in STEM disciplines and STEM professions. The project team will develop conceptual and pedagogical frameworks that support middle school youth' engagement and interest in science, engineering, technology, and mathematics through repurposing spaces where these youths frequent. A major outcome of the project will be workforce preparation and offers a promising approach for encouraging youth to persist along STEM pathways, which may ultimately result in broadened participation in STEM workforces.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lawrence Clark Stephanie Timmo Brown
resource project Media and Technology
Despite the ubiquity of Artificial Intelligence (AI), public understanding of how it works and is used is limited This project will research, design, and develop innovative approaches focusing on Artificial Intelligence (AI) for under-represented youth ages 14-24. Program components include live social media chats with AI leaders, app development, journalistic investigations of ethical issues in machine learning, and review of AI-based consumer products. Youth Radio is a non-profit media and tech organizations that provides youth with skills in STEM, journalism, arts, and communications. They engage 250 youth annually through free after-school classes and work shifts. Participants are 90% youth of color and 80% low income. Project partners include the MIT Media Lab which developed App Inventor which allows novice users to build fully functional apps. Staff from Google will serve as a project advisor on the curriculum. The project has exceptional national reach through the dissemination of its media and apps through national outlets such as NPR and Teen Vogue as well as various platforms including online, on-air, as well as presentations, publications, and training tools. The project broadens participation by engaging these low income youth of color in developing skills critical to the workforce of the future. It will help prepare an upcoming generation of Artificial Intelligence creators, users, and consumers who understand the technology and embrace and encourage its potential.It will give them the necessary knowledge and opportunities for careers in an AI-driven future.

This project is grounded in sociocultural learning theory and practice and is interdisciplinary by design. The theoretical framework holds that Computational Thinking plus Critical Pedagogy leads to Critical Computational Literacy. Also, Digital Age Civics plus Participatory Culture leads to Civic Imagination helping youth build a better world through technology. The driving research questions include: What do underrepresented youth understand about AI and its role in society? What are the ethical dilemmas posed by AI from their vantage point? What are the features of an engaging ethics-centered pedagogy with AI? What impact do the AI products developed by the youth have on the target audience? The research design will use ethnographic techniques and design research to study and analyze youth learning. Data sources will include baseline surveys, audio recordings and transcriptions from learning sessions with the participants, research analytic memos, focus group interviews, student-generating artifacts of learning and finished products, etc. The design-based approach will enable systematic, evidence-based iteration on the initiative's activities, pedagogical approach and products. An independent summative evaluation will provide complementary data and perspective to triangulate with the research findings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Elisabeth Soep Ellin O'Leary Harold Abelson