RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
There is growing interest in stories as potentially powerful tools for science learning. In this mini-review article, we discuss theory and evidence indicating that, especially for young children, listening to and sharing stories with adult caregivers at home can make scientific ideas and inquiry practices meaningful and accessible. We review recent research offering evidence that stories presented in books can advance children’s science learning.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Informal STEM learning opportunities are often rare in rural locations where the early childhood education system is also under-resourced. Through partnerships with educational researchers, early math educators, pediatric health experts, and pediatric clinics, this project will develop and study a new opportunity for informal math learning. The project will work with pediatric clinics that serve rural immigrant families who are racially, culturally, and linguistically diverse. The project leverages the high levels of trust many caregivers have in their child’s pediatrician to improve math learning during critical early years. This project will build on a previous program where physician text messages to caregivers supported youth literacy development. In this instance the project will support caregivers’ math interactions with their 3- and 4-year-olds to cultivate children's math knowledge and skills. The text messaging program will be grounded in research in child development, mathematics learning, parenting practices, and adult behavior change. Texts will also provide caregiver supports for how to engage their children in mathematical activates in their everyday lives and provide information about the important skills children are developing. Text messages will be co-developed with caregiver input, and focus on content underlying mathematical development such as Number Sense, Classification and Patterning, Measurement, Geometry, and Reasoning. Caregivers will receive text messages from their pediatric clinics three times a week for eight months. For example, three related texts supporting Number Sense include: “FACT: Kids enjoy counting and it prepares them for K! Mealtimes are a fun time to practice counting objects;” “TIP: At a meal, say: Can you count all the cups on the table? All the plates? What else can you count? (Forks) Tell them: Great job!” and “GROWTH: You are helping kids to count & get ready for K. At the park, ask: How many bikes are there? How many birds? Count together & find out!” Throughout the planning and implementation phases of the project the team will work closely with early education math experts, key advisors, and caregivers to ensure the text messaging program is tailored to meet the cultural, linguistic, and contextual needs of rural caregivers and children.
The project will research impacts of the text messaging program on children, caregivers, and clinical staff. First, the project will investigate the impact of the texting program on children through a randomized trial, and pre-and-post measures of early childhood math skills and abilities. Second, using interviews at baseline and in a 9-month follow-up, the project will study the texting program’s impact on caregivers’ perceptions regarding the importance of math learning for young children. Third, the project will explore the impact of the text messaging program on health professionals’ understanding of math learning in early childhood by collecting qualitative data and assessing attitudes about the clinic’s role in supporting early math. Caregivers and clinic staff will also participate in focus groups to better understand impacts for each of these groups. The project will reach 1000 families, who will be randomly assigned to treatment or control groups through block-randomization, stratified by caregiver language and child’s age. This parent-informed project will build evidence toward new approaches to promoting early math in the pediatric clinic, an informal environment that can reach all families and can leverage innovative technology. Findings will be shared widely though a communication and engagement plan that includes children, caregivers, physicians and clinic staff, informal STEM educators, researchers, and policy makers.
DATE:
-
TEAM MEMBERS:
Lisa ChamberlainSusanna LoebJaime Peterson
This project is funded by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development. It responds to continuing concerns about racial and social inequities in STEM fields that begin to emerge in the early childhood years. The overarching goal of the project is to identify cultural strengths that support early science learning opportunities among Spanish-speaking children from immigrant Latin American communities, a population that is traditionally underrepresented in STEM educational and career pursuits. Building on a growing interest in the ways stories can promote early engagement in and understanding of science, this project will investigate the role of oral and written stories as culturally relevant and potentially powerful tools for making scientific ideas and inquiry practices meaningful and accessible for young Latinx children. Findings will reveal ways that family storytelling practices can provide accessible entry points for Latinx children's early science learning, and recommend methods that parents and educators can use to foster learning about scientific practices that can, in turn, increase interest and participation in science education and fields.
The project will advance knowledge on the socio-cultural and familial experience of Latinx children that can contribute to their early science learning and skills. The project team will examine the oral story and reading practices of 330 Latinx families with 3- to 5-year-old children recruited from three geographic locations in the United States: New York, Chicago, and San Jose. Combining interviews and observations, the project team will investigate: (1) how conversations about science and nature occur in Latinx children's daily lives, and (2) whether and to what extent narrative and expository books, family personal narratives, and adivinanzas (riddles) engender family conversations about scientific ideas and science practices. Across- and within-site comparisons will allow the project team to consider the immediate ecology and broader factors that shape Latinx families’ science-related views and practices. Although developmental science has long acknowledged that early learning is culturally situated, most research on early STEM is still informed by mainstream experiences that largely exclude the lived experiences of children from groups underrepresented in STEM, especially those who speak languages other than English. The proposed work will advance understanding of stories as cultural resources to support early science engagement and learning among Latinx children and inform the development of high quality, equitable informal and formal science educational opportunities for young children.
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
Early childhood is a critical time for developing foundational knowledge, skills, and interest in science, technology, engineering, and mathematics (STEM). For that reason, the Public Broadcasting Service (PBS) places a great priority on developing early childhood STEM content, especially through its television shows that are watched by over 60% of young children in the United States. Research suggests that adding in-the-moment interaction to television watching promotes learning and engagement. Toward this end, researchers from the University of California, Irvine and PBS KIDS have prototyped interactive versions of science shows that children view on internet-connected devices while they communicate with the main character powered by an AI conversational agent. Pilot studies show that when children watch these new interactive videos with the main character pausing periodically to ask probing questions about the learning goals of the episode and following up with appropriate responses, they are more engaged and learn more about science, with heightened benefits for children who speak languages other than English at home. Based on these early results, in this Innovations in Development project the research team will develop, test and produce publicly available conversational episodes for two PBS KIDS television shows, one focused on science and the other on computational thinking.
The project will iteratively study and develop six conversational videos with novel forms of support for children, including extended back-and-forth conversation that builds upon a child's responses, visual scaffolding that facilitates verbal communication, and bilingual language processing so that children can answer in English or Spanish. The conversational videos will be evaluated in both lab-based and home settings. The lab-based study will involve 600 children ages 3-7 in a predominantly low-income Latino community in Southern California, in which researchers compare children’s learning and engagement when watching the conversational videos with three other formats: (1) watching the non-interactive broadcast version of the video; (2) watching the video with pseudo-interaction, in which the main character asks questions and gives a generic response after a fixed amount of time but can’t understand what the child says; or (3) watching the broadcast version of the video with a human co-viewer who pauses the video and asks questions. The home-based study will involve 80 families assigned to watch either the non-interactive or interactive videos as many times as they want over a month at home. In both the lab-based and home studies, pre- and post-tests will be used to examine the impact of video watching on science and language learning, and log data will be used to assess children’s verbalization and engagement while watching. Following the home study, the six videos will be further refined and made available for free to the public through the PBS KIDS apps and website, which are visited by more than 13 million users a month. Beyond providing engaging science learning opportunities to children throughout the country, this study will yield important insights into the design, usability, feasibility, and effectiveness of incorporating conversational agents into children’s STEM-oriented video content, with implications for extending this innovation to other educational media such as e-books, games, apps, and toys.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE:
-
TEAM MEMBERS:
Mark WarschauerSilvia LovatoAndres BustamanteAbby JenkinsYing Xu
Families play a vital role in supporting children’s informal science learning. Yet multiple studies have shown that Latinx families, particularly in neighborhoods with a high poverty rate, face many barriers to accessing informal science experiences and environments. Telenovelas, a type of television serial drama watched by Spanish-speaking audiences around the world, may provide an entryway to reaching these families. Prior research has shown that telenovelas can be an effective means of changing adults’ behavior, with potential cascading impacts on children. Education Development Center, Literacy Partners, and Univision will use a culturally responsive approach to broaden participation of Latinx families in informal science learning using La Fuerza de Creer, a popular Spanish-language telenovela that reaches 7 million U.S. viewers. The five-episode telenovela series will model positive informal science interactions between caregivers and their children and provide positive role models of Latinx scientists. The project team will then use the telenovela as the foundation for a five-session workshop series for caregivers to further explore how to engage in these informal science learning opportunities with their children. The La Fuerza-STEM project will build on families’ strengths and interests and tap their power—la fuerza—to engage children in exploring science. This research will examine the relationship between the telenovela/workshops and caregivers’ practices and attitudes towards science. La Fuerza-STEM seeks to expand informal science learning using a culturally grounded strategy to engage an under-served population that is historically under-represented in STEM.
The project will use an iterative research and design process that is guided by the input of both parent and scientific advisory boards. Front-end formative research with approximately 30 Latinx caregivers from under-resourced communities will explore their informal science practices. These experiences will then inform script development for the telenovela. A pre-post comparison group study with 200 caregivers will investigate how caregivers’ attitudes toward science might change as a result of viewing the telenovela. The project will then build a 5-session workshop series around the telenovela and these research findings. Finally, 300 caregivers will participate in a randomized controlled trial to examine the efficacy of the La Fuerza-STEM workshops on changing caregivers’ informal science attitudes and practices. Throughout, the project will address the overarching research question, How can a culturally relevant telenovela be used to improve Latinx caregivers’ science self-efficacy, career awareness, and informal science practices? Project findings and products will be publicly disseminated through publications, conference presentations, and local partner organizations, with an eye toward open access and data sharing. The project will generate knowledge about the effectiveness of embedding informal science content in a culturally-grounded medium—the telenovela—in improving caregivers’ confidence and competence to engage in informal science learning experiences with their children. With an anticipated audience of 7 million, the potential impact of the telenovela on caregivers’ informal science attitudes and practices is enormous. By implementing workshops with local organizations, the project aims to be self-sustaining, building the capacity of community partners to provide families with services targeting informal science knowledge and skills long after the grant has ended.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE:
-
TEAM MEMBERS:
Joy KennedyJessica YoungAlexia RaynalAnthony Tassi
In order for children to identify with STEM fields, it is essential that they feel there is a place within STEM for individuals “like them.” Unfortunately, this identification is difficult for Hispanic/Latine youths because of lack of representation and even stereotyping that is widespread in educational institutions in the United States. Some research has been done, though, that suggests there is promise in understanding the ways that parents help children see themselves as “STEM people” in spite of these obstacles. Building on this work, we present some of our own research on the experiences
For at-risk children who cannot attend preschool, accessing science activities depends almost entirely on parents—but many parents have limited skills for supporting such learning. PBS station WGBH has recently launched a series of free family apps based on the Emmy Award-winning preschool science series, PEEP and the Big Wide World. The apps were developed to be used jointly by parent and child for a shared learning experience. Available on Google Play and the App Store in both Spanish and English, PEEP Family Science apps cover the topics of shadows, sound, color, and ramps, respectively.