In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
Teen Conservation Leadership is a major integration and expansion of the Monterey Bay Aquarium's existing teen education programs (Student Oceanography Club, Young Women in Science and Student Guides). The project is growing and enhancing these programs through the following activities: - Service-Learning and Leadership Activities, including: Guest Service Track: professional development and training as interpreters Camp and Club Track: serving as a mentor for other participants Program Track: assisting in the delivery of programs - Conservation and Science Activities, including participating in and leading projects with local organizations, and participating in technologically facilitated outdoor learning experiences - Teen Network and Technology Activities, including onsite networking and information sharing through Web 2.0 technology The project will reach 930 teens. Each teen will provide 200 service-learning hours per year. The sequential nature of this project will encourage many teens to participate for multiple years.
Girls met to engage with Through My Window twice each week after school. The afterschool program format provided a freer, less structured atmosphere than a classroom setting. Students extensively debated and investigated the questions and themes posed by the novel, Talk to Me. The meeting space had plenty of space for students to move around, as well as teachers who encouraged the expression of full emotional and intellectual enthusiasm for the story at hand.
Beginning in September 2015, with funding from the National Science Foundation (NSF), Twin Cities Public Television (TPT) initiated the three-year project Latina SciGirls: Promoting Middle School-Age Hispanic Girls' Positive STEM Identity Development. The cornerstone of the project is a fourth season of the Emmy Award-winning television and transmedia project SciGirls, to premiere in 2017, in this case involving six half-hour SciGirls episodes filmed in Spanish showing groups of Hispanic girls and their Hispanic STEM mentors investigating science and engineering problems. The television
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners). A total of 86 participants representing these diverse audience perspectives were asked to review an episode of the SciGirls program Hábitat en Caos/Habitat Havoc and two role model scientist profile videos featuring Karin Block and Victoria Velez. Scheduled early in Year 1 of the
The independent evaluation team subsequently undertook a formative evaluation to provide the production team with feedback on issues that arose from the front-end evaluation findings and from tpt’s early production work on the first Season Four episode and STEM role model videos.
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners).
Appendix includes logic model.
This is a conference review of the 2nd Commemoration of the International Day of Women and Girls in Science, which had the theme Gender, Science and Sustainable Development: The Impact of Media. It was held in United Nations Headquarters, New York City, U.S.A., and a parallel event was held simultaneously in Valetta, Malta. There were 45 listed speakers from 24 countries, with a gender ratio of 2:1 in favour of women. The contribution of the media to socio-cultural barriers facing girls and women in STEM was well-illustrated. However, few actionable solutions were proposed.
The U.S. Education system is becoming more and more diverse and educators must adapt to continue to be effective. Educators must embrace the diversity of language, color, and history that comprises the typical classroom; this means becoming culturally competent. In doing so, comes with it the prospect of using culture to enhance the learning experience for students and the educator. Although the process of becoming culturally competent can be outlined, the realization of a culturally competent educator depends on changing one’s own perceptions and beliefs. The need for cultural competency and
Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science
Students in the U.S. educational system are increasingly diverse, and this diversity is reflected in science, technology, engineering, and mathematics (STEM) fields. Diversity in education encompasses students from many races, genders, and socioeconomic backgrounds; students who speak a variety of languages; and students from many cultures. For instance, ethnic diversity increased by 5% across primary and secondary public schools from 2000 to 2007 (Aud, Fox, & KewalRamani, 2010). Diversity is also evident in the socioeconomic make-up of students, with almost half of 4th graders in public
This project will develop standardized, exportable and comparable assessment instruments and models for Women In Engineering (WIE) programs nationwide, thus allowing them to assess their program's activities and ultimately provide data for making well-informed evaluations.
To accomplish this goal, the principal investigators at the University of Missouri and Penn State University will work over a three-year period with their institutions' WIE programs and three cooperating programs at Rensselaer Polytechnic Institute, Georgia Tech, and University of Texas at Austin. With these five programs that collectively represent a variety of private and public, years of experience for WIE directors and student body characteristics, the investigators will pilot, revise, implement, conduct preliminary data analysis and disseminate easy-to-access, reliable and valid assessment instruments. The principles of formative evaluation will be applied to all instruments and products. All institutions will use the same set of instruments, thus allowing them to have access to powerful benchmarking data in addition to the data from each of their respective institutions.
A prior project, the Women's Experience in College Engineering Project (WECE) sought to characterize the factors that influence women students' experiences and decisions by studying college environments, events and support programs that affect women's satisfaction with their engineering major, and their decisions to persist or leave these majors. In contrast to WECE's macro-level and student focus, this proposal's target audience is WIE directors, with a focus on WIE programs, not students.
Women in Engineering programs around the United States are a crucial part of our country's response to the need for more women in engineering professions. There are about 50 WIE programs nationwide. Half have expressed interest in this effort. WIE directors will benefit by having ready-made assessment tools that will allow them to collect data on programs, evaluate these programs, and make decisions on how to revise programs and / or redistribute limited resources to maximize overall program effectiveness. Data from these instruments will also provide substantiated evidence for administrators, advisory boards and potential funding agencies. Finally, because these instruments will be available nationwide, programs will have the opportunity to take advantage of powerful benchmarking data for their decision-making processes.
This project provides the next logical step in the national movement to recruit and retain women in engineering.