Thinking SMART is a comprehensive five-year program that will encourage young women to pursue careers in science, mathematics and technology. The project focuses on girls ages 12-18, and will especially target those who are underserved and underrepresented in the sciences, including girls from diverse backgrounds and persons with disabilities. Key elements include four science/engineering module options, a two-tiered mentoring component, training, resource materials, online activities and an awards program. The modules (Material Girls, Eco Girls, Galactic Girls, Net Girls), focus on engineering, ecology, physics and computer science respectively, and will be aligned with national standards. The modules are implemented during the school year and include weekly programming, a summer camp and a spring "Women in Science and Engineering" conference organized by girls. Weekly meetings are augmented by online activities, in which girls interact with other participants and mentors, publish reports and obtain career information. Additionally, participants who complete all four modules are eligible to become paid mentors for younger participants. Five publications will be produced to support the program, including manuals for mentors (both adults and youth), module activities, a parent guide and a guide for implementation sites on community partnerships. Thinking SMART materials will be developed and piloted tested at eight sites in conjunction with Girls, Inc. affiliates in Nashua, NH, Worcester, MA, Oakridge, TN and Shelbyville, IN, with input from the Society of Women Engineers. Extensive training will also be provided for pilot programs and future dissemination. Finally the E3 Awards Program will motivate implementation sites to create high quality local programs. It is anticipated that more than 1,500 Girls, Inc. affiliates will adopt "Thinking SMART."
DATE:
-
TEAM MEMBERS:
Brenda StegallJanet StantonHeather Johnston NicholsonShalonda MurrayJoe Martinez
The Media Working Group is producing a one-hour documentary about a group of undergraduate women at Ohio State University who are pursuing non-traditional paths of study in a variety of technology and science fields. The Gender Chip Project is designed to provide role models and encouragement for girls (ages 14-18) and young adults who wish to enter STEM careers; and to raise general public awareness about the continuing need to develop STEM education and career opportunities for young women. The broadcast documentary will be complemented by distribution of the program with additional material on DVD. The project will also design a website for Guidance Counselors and young women contemplating STEM education. Project evaluation will be conducted by Kathleen Tyner, Lead Evaluator from Hi-Beam Consulting in San Francisco.
WGBH will develop, produce, and distribute a comprehensive project that will review science of the twentieth century. The major components of the project will be a series of five, two-hour, prime time documentary programs for PBS, an outreach campaign to involve the public through informal and formal science education institutions and organizations, material for use in formal classrooms, and a science museum component. The focus of the series will be to review the science of the twentieth century by telling the dramatic story of the struggle to understand ourselves and our world over the past 100 years -- a time when science advanced further than in previous eras combined and when scientific discipline underwent a revolution. However, because at the close of the century there is an ever-widening gap between what scientists know and what most of the public comprehends, the series will explore the century's most enduring scientific endeavors with each two-hour program probing several related fields of investigation and application: views of the universe and of matter; origins of the Earth and of life; health, medicine, and the human body; human nature and behavior; and technology and engineering. It will offer viewers an opportunity to view 100 years of scientific pursuits as a whole, to recast their perceptions of science and scientists, and to be intrigued and inspired by a view of science as a never-ending and deeply human quest for answers and solutions. The outreach component of the project include: Video-based Components - videocassettes of the series, video modules selected for classroom use, level one videodiscs, and a prototype for a CD-ROM for home learning. A Discovery Challenge Activity - a national campaign targeted primarily for girls and boys 11-14 years of age. The two-phase activities will be offered through middle school science and social studies classes; through youth groups such as Girls Inc., Family Science Programs, 4-H, and Girls and Boys Clubs; at museums and science centers; and through other informal education outlets. Activities will be designed so they can be undertaken by youth with a wide range of interests, learning styles, and skills. Print Components - teacher's guide, video module activity guide, videodisc guide, poster, and a companion trade book. On-line Component - an electronic bulletin board and e-mail center related to the project. Public access sites will be established in libraries, community centers, and schools throughout the country and members of the public with home computers will be able to connect to WGBH at no cost. Service and activities offered on-line will include the ability of viewers to critique programs, ask questions of the production team, download educational materials, and ordering project material. The bulletin board will provide an electronic forum for educators to exchange strategies and ideas as they use the project's resources and enable participants in the Discovery Challenge to tap into the on-line resources and share information. The on-line component will be managed and controlled at WGBH. Museum Component - consisting of a museum tool kit and activities to be incorporated Science-by-Mail. Paula Apsell, executive producer for NOVA and director of the WGBH Science Unit, will serve as executive-in-charge of production. Jon Palfreman will be executive producer and will head up a project team consisting of the executive editor, Thomas Friedman, a senior producer, and two producers. Outreach activities will be the responsibility of Beth Kirsch, Director of Educational Print and Outreach, and Simone Bloom, Outreach Manager.
DATE:
-
TEAM MEMBERS:
Paula ApsellThomas FriedmanJon Palfreman
The long-term goal is to broaden our model program that currently targets African-American populations in the national capital area. The aim of the program is to: a) educate junior and senior high students and elementary school teachers directly; and b) provide opportunities for exploration of health-related sciences for the public at large (via an interactive website) so that topics in the biomedical sciences become "friendly and familiar" rather than the existing stereotype that science is erudite, obtuse, and incomprehensible. Specific objectives: (A) Design hands-on experiences in science laboratories and opportunities to interact with scientists in the setting of a sophisticated research institute; especially target under-represented minorities, students from inner city schools and other local schools where science opportunities may be limited. This will include junior and high school students, elementary school teachers, as well as interactions with Children's Museum and other similar organizations. (B) Set up interactive web-based informatics to include: i) a system where high school students could refine the question they are posing for science projects by discussing it with a professional scientist; ii) a general "ask-the-expert" site for science and health issues; iii) a reference site containing the detailed experimental protocols for student experiments; and iv) an interactive resource to aid teachers throughout the U.S. to establish contacts with scientists. The goal of this project is to extend the reach of current health science programs that are targeted to females, African-American junior and senior high school students, and elementary school teachers, located in the Washington, D.C., metropolitan area. The project includes laboratory apprenticeships, student mentoring, and an interactive website to help students and teachers establish contact with scientists nationwide.
Ocean GEMS is a multi-media series and outreach program that connects girls to women marine scientist role models to inspire investigation of ocean science adventures & careers.
Click! Urban Adventure Game was a mixed-reality role-playing game where girls worked in teams to solve a fictional mystery based on a real-world issue, using technology and science to conduct their investigation. In this article we describe the design of the experience and present evidence that the game increased girls’ confidence, interest, and knowledge of science and technology and helped to build a community of support and conversation-centred learning for girls. This example has implications for the design of informal learning experiences that bridge interest and identity with science and
Investigators from the MIT Media Lab will develop and study a new generation of the Scratch programming platform, designed to help young people learn to think creatively, reason systematically, and work collaboratively -- essential skills for success in the 21st century. With Scratch, young people (ages 8 and up) can program their own interactive stories, games, animations, and simulations, then share their creations with others online. Young people around the world have already shared more than 1 million projects on the Scratch community website (http://scratch.mit.edu). The new generation, called Scratch 2.0, will be fully integrated into the Internet, so that young people can more seamlessly share and collaborate on projects, access online data, and program interactions with social media. The research is divided into two strands: (1) Technological infrastructure for creative collaboration. With Scratch 2.0, people will be able to design and program new types of web-based interactions and services. For example, they will be able to program interactions with social-media websites (such as Facebook), create visualizations with online data, and program their own collaborative applications. (2) Design experiments for creative collaboration. As the team develops Scratch 2.0, they will run online experiments to study how their design decisions influence the ways in which people collaborate on creative projects, as well as their attitudes towards collaboration. This work builds on a previous NSF grant (ITR-0325828) that supported the development of Scratch. Since its public launch in 2007, Scratch has become a vibrant online community, in which young people program and share interactive stories, games, animations, and simulations - and, in the process, learn important computational concepts and strategies for designing, problem solving, and collaborating. Each day, members of the Scratch community upload nearly 1500 new Scratch projects to the website - on average, a new project almost every minute. In developing Scratch 2.0, the team will focus on two questions from the NSF Program Solicitation: (1) Will the research lead to the development of new technologies to support human creativity? (2) Will the research lead to innovative educational approaches in computer science, science, or engineering that reward creativity?
Intellectual Merit: The intellectual merit of the project is based on its study of how new technologies can foster creativity and collaboration. The investigators will conduct design experiments to examine how new features of Scratch 2.0 engage young people in new forms of creative expression, collaboration, learning, and metadesign. Young people are already interacting with many cloud-based services (such as YouTube and Facebook). But Scratch 2.0 is fundamentally different in that it aims to engage people in programming their own projects and activities in the cloud. With Scratch 2.0, young people won't just interact with the cloud, they will create in the cloud. The goal is to democratize the development of cloud-based activities, so that everyone can become an active contributor to the cloud, not just a consumer of cloud-based services. This development and study of Scratch 2.0 will lead to new insights into strategies for engaging young people in activities that cultivate collaboration and creativity. Broader Impacts: The broader impact of the project is based on its ability to broaden participation in programming and computer science. The current version of Scratch has already helped attract a broader diversity of students to computer science compared to other programming platforms. The investigators expect that the collaboration and social-media features of Scratch 2.0 will resonate with the interests of today's youth and further broaden participation. Integration of Scratch into the introductory computer science course at Harvard led to a sharp reduction in the number of students dropping the course, and an increase in the retention of female students. There have been similar results in pre-college courses. The National Center for Women & Information Technology (NCWIT) calls Scratch a promising practice for increasing gender diversity in IT.