Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
resourceprojectProfessional Development, Conferences, and Networks
The National Science Teachers Association will convene a conference that will bring together STEM researchers and practitioners to review the growing connected science learning movement. A connected science learning environment has been described as a robust science ecology containing a wide variety of programs, across a range of institutions and places, allowing youth different and multiple ways to engage with STEM. Such environments can include small partnerships, such as a science museum and K-12 schools, or a large, community-wide network of a variety of organizations such as K-12 schools, museums, universities, government agencies, and community organizations. The conference will bring together over forty participants, who will meet in a series of several online meetings. The conference will result in a series of papers, articles in the online Connected Science Learning journal and other publications, a series of webinars and online forums where participants can engage with themes identified in the conference, and conference presentations at the annual meetings of organizations including the National Science Teachers Association, the Association of Science-Technology Centers, and others. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The conference will: (1) document the research foundation that supports and demonstrates the impact and value of high-quality connected science learning experiences; (2) identify areas for which future research is recommended; and (3) provide effective, practitioner-focused resources that advance connected STEM learning. The conference will include participants that represent a wide range of researchers and practitioners in informal and formal STEM education, as well as representing gender, racial/ethnic and geographical diversity. The results and products of the conference will be instrumental in developing the understanding and appreciation for connecting STEM learning and ultimately improving connected STEM learning for K-12 youth. The importance of emphasizing diversity, equity, and accessibility will be strongly represented in the key evidence identified through the conference and will be reflected in the resources that will be disseminated to a broader audience.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Why do scientists volunteer to be involved in public engagement in science? What are the barriers that can prevent them participating in dialogue with society? What can be done to facilitate their participation? We report the outcomes of a series of focus groups conducted with the young scientists who volunteered in SISSA for schools (S4S), the Children's University program of the International School for Advanced Studies (SISSA) in Trieste, Italy.
S4S is based on the contribution of PhD students as volunteers, has a participatory character, and is attentive to social and gender inclusion
DATE:
TEAM MEMBERS:
Simona CerratoValentina DaelliHelena PertotOlga Puccioni
This article introduces a special issue focused on investigating the role of learners’ self-identification with disciplinary endeavors (e.g., science-related investigations, interpretations of historical events) in relation to the design of and their participation in learning environments. Over the past decade there has been a growing body of research focused on how learners’ ideas about themselves as social actors in activities mediate participation within and across learning environments and how the development of learners’ disciplinary identities can be a productive goal of educational
DATE:
TEAM MEMBERS:
Philip BellKatie Van HorneBritte Haugan Cheng
Diversity among scientists can foster better science, yet engaging and retaining a diversity of students and researchers in science has been difficult. Actions that promote diversity are well defined, organizations are increasingly focused on diversity, and many institutions are developing initiatives to recruit and enroll students from underrepresented minority (URM) groups (racial, ethnic, gender, sexual identity, or persons with disabilities). Yet representation of URM groups in science, technology, engineering, and math (STEM) fields lag behind demographics in society at large, and many
DATE:
TEAM MEMBERS:
Chandler PurittyLynette R. StricklandEanas AliaBenjamin BlonderEmily KleinMichael T. KohlEaryn McGeeMaclovia QuintanaRobyn E. RidleyBeth TellmanLeah R. Gerber
Objective: Although upward transfer in science, technology, engineering, and mathematics (STEM) fields represents a prominent national policy concern, community college students’ aspirations for transfer in STEM are often impeded, resulting in lower transfer rates. This study investigated four aspects of community college STEM students’ aspirational experiences and behaviors with regard to transfer: support for transfer, transfer service usage, transfer-oriented interactions, and transfer information acquisition. Particular attention was paid to how these factors may impact students’
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.
While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE:
-
TEAM MEMBERS:
Amy TuiningaAshwani VasishthPankaj Lai
resourceprojectProfessional Development, Conferences, and Networks
This is a project to offer the Forum on Inclusive STEMM Entrepreneurship (FISE), a novel effort to broaden the participation of underrepresented minority women in STEMM entrepreneurship and to enhance the diversity of the science and engineering workforce. Through a convening of educators, entrepreneurs, aspiring entrepreneurs, industry leaders, investors and policy experts, entrepreneurial education thought leaders, and intersectionality scholars the PI proposes to use this conference as a platform for building capacity in the preparation and development of future entrepreneurs from underrepresented groups. The PI also seeks to contribute to the emerging field of research that bridges tech entrepreneurship and education policy.
The proposed forum has the potential to advance knowledge in the field of entrepreneurship education and engineering education. Given the dearth of research-based interventions to broaden participation in tech entrepreneurship, this conference offers an opportunity for participants to contribute to the leading edge of research and interventions in this field.
The convening and associated activities will leverage the social capital of knowledgeable experts in the academy and industry, investors, entrepreneurs and aspiring entrepreneurs to address critical needs of the nation that relate to enhanced global competitiveness, an improved national economy, and the participation of underrepresented cohorts in entrepreneurship and commercialization.
The U.S. Education system is becoming more and more diverse and educators must adapt to continue to be effective. Educators must embrace the diversity of language, color, and history that comprises the typical classroom; this means becoming culturally competent. In doing so, comes with it the prospect of using culture to enhance the learning experience for students and the educator. Although the process of becoming culturally competent can be outlined, the realization of a culturally competent educator depends on changing one’s own perceptions and beliefs. The need for cultural competency and
DATE:
TEAM MEMBERS:
Alicia Santiago
resourceprojectProfessional Development, Conferences, and Networks
Science, Technology, Engineering, and Mathematics (STEM) education and workforce development in the US are critical for global competitiveness and national security. However, the U.S. is facing a decrease in entrants to the STEM workforce which is not shared evenly across demographics. Specifically, women, underrepresented minorities, and people with disabilities obtain STEM degrees and enter the STEM workforce at levels significantly below their demographic representation in the U.S. The National Science Foundation's (NSF) Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities. This conference focuses on collective impact as a strategy to address the broadening participation challenge. Collective impact is distinguished from collaboration in that the alliances require a backbone organization to succeed. The goal of this project is to organize a conference to inform backbone organizations toward broadening participation in STEM education and the workforce.
The conference takes place at the University of California, San Diego January 20-22, 2017 and brings together Project Investigators from the Design and Development pilots, along with stakeholders in broadening participation in STEM on a local, regional, and national scale. The overarching goal of the conference is to develop the knowledge base of participants in the application of the collective impact model, and the role of backbone organizations to address specific issues and transition points of the STEM pipeline. Conference participants include K-12, community college, and university representatives; leaders in graduate education, policy makers and private sector employers. The conference includes plenary sessions, flash presentations, and interactive workgroups engaged in the development of collective impact approaches to problems in Broadening Participation in STEM. Workgroups share their insights, and audience feedback is electronically curated via Twitter and Storify. To respond in real time to participant questions or insights this conference uses the innovative platform, IdeaWave, to solicit, sort and value ideas from the attendees before, during, and after the conference. Conference results are integrated into a final report to inform the NSF INCLUDES Alliances backbone organizations. The intellectual merit of the project is that it advances knowledge about the barriers to broadening participation in STEM education and the workforce, the collective impact model, and the role of the backbone organization to guide the vision and strategy, and support the activities, evaluation, and communication of the NSF INCLUDES Alliances. The broader impact of this project is that it benefits society by informing backbone organizations, which leads to broadening participation of the STEM workforce and ultimately increases U.S. global competitiveness and national security.
DATE:
-
TEAM MEMBERS:
Kim Barrett
resourceprojectProfessional Development, Conferences, and Networks
The National Science Foundation's (NSF)Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities.
The University of Akron will convene a two-day conference to develop a backbone organization to support the preparation and advancement of underrepresented minorities K-12 through careers in the biosciences, a high growth area for engineering (biomechanics, biometrics and biomaterials). This conference draws on the expertise of a wide range of organizations, professional associations, K-20+, community based organizations, industry and museums. The intent is to strengthen the network among participants and leverage learning on how to engage youth in the biosciences.
The results of this first conference will be a white paper that will be disseminated to several professional societies that outlines a backbone infrastructure for addressing both short-term and longer-term aspects of an NSF INCLUDES alliance centered on bioengineering, biomechanics, biomedical engineering and biomaterials.
DATE:
-
TEAM MEMBERS:
Brian DavisCarin HelferRouzbeh Amini
From Intel to Facebook, Google and Apple, technology companies are joining other science, technology, engineering, and mathematics (STEM) industry leaders in a grand challenge to diversify their workforce. Finally, two sides of the diversity message can be heard simultaneously: expanding opportunities for women and girls is not just the right thing to do, investing in diversity is also a smart business opportunity. To meet workforce supply demands, improve innovation, and ensure social equity, STEM professions need the imaginations and talents of girls and underrepresented communities of color