This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The Designing Our Tomorrow project will develop a framework for creating exhibit-based engineering design challenges and expand an existing model of facilitation for use in engineering exhibits. The project seeks to broaden participation in engineering and build capacity within the informal science education (ISE) field while raising public awareness of the importance of sustainable engineering design practices. The project focuses on girls aged 9-14 and their families and is co-developed with culturally responsive strategies to ensure the inclusion and influence of families from Latino communities. The project will conduct research resulting in theory-based measures of engineering proficiencies within an exhibit context and an exhibit facilitation model for the topic area of engineering. Based on the research, the project will develop an engineering design challenge framework for developing design challenges within an exhibit context. As the context for research, the project will develop a bilingual English/Spanish 2,000-square foot traveling exhibition designed to engage youth and families in engineering design challenges that advance their engineering proficiencies from beginner to more informed, supported by professional development modules and a host-site training workshop introducing strategies for facilitating family engineering experiences within a traveling exhibition. The project is a collaboration of Oregon Museum of Science and Industry with the Biomimicry Institute, Adelante Mujeres, and the Fleet Science Center.
Designing Our Tomorrow builds on a theory-based engineering teaching framework and several previous NSF-funded informal education projects to engage families in compelling design challenges presented through the lens of sustainable design exemplified by biomimicry. Through culturally-responsive co-development and research strategies to include members of Latino communities and provide challenges that highlight the altruistic, creative, personally relevant, and collaborative aspects of engineering, the Designing Our Tomorrow exhibition showcases engineering as an appealing career option for women and helps families support each other's engineering proficiencies. To better understand and promote engineering learning in an ISE setting, the project will conduct two research studies to inform and iteratively develop effective strategies. In the first study, measurement development will build on prior research and practice to design credible and reliable measures of engineering proficiency, awareness, and collaboration, as well as protocols for use in exhibit development and the study of facilitation at engineering exhibits, and future research. The second study will explore the effects of facilitation on the experience outcomes.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
As part of ongoing efforts to support a diverse and robust engineering workforce and ensure that children and adults from all communities have the engineering and design thinking skills to succeed in a science, technology, engineering, and mathematics (STEM)-rich world, identity has become a growing focus of research and education efforts. In order to advance our understanding of engineering-related identity negotiation within informal STEM education contexts, we conducted an in-depth, qualitative investigation of six adolescent girls participating in an afterschool engineering education
In this article, we investigate how the national imperative to increase opportunities for young women of color in science, technology, engineering, and mathematics (STEM) and to broaden their participation was taken up locally at two high schools in one school district. Using ethnographic and longitudinal data, we focus on four young women of color (two at each school) as they negotiated STEM-related identities in the discursive and practice contexts of their lives at school. Using Holland and Lave’s concept of history in person, we view the young women as fighting for particular versions of a
Beginning in September 2015, with funding from the National Science Foundation (NSF), Twin Cities Public Television (TPT) initiated the three-year project Latina SciGirls: Promoting Middle School-Age Hispanic Girls' Positive STEM Identity Development. The cornerstone of the project is a fourth season of the Emmy Award-winning television and transmedia project SciGirls, to premiere in 2017, in this case involving six half-hour SciGirls episodes filmed in Spanish showing groups of Hispanic girls and their Hispanic STEM mentors investigating science and engineering problems. The television
The independent evaluation team subsequently undertook a formative evaluation to provide the production team with feedback on issues that arose from the front-end evaluation findings and from tpt’s early production work on the first Season Four episode and STEM role model videos.
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners).
Appendix includes logic model.
The U.S. Education system is becoming more and more diverse and educators must adapt to continue to be effective. Educators must embrace the diversity of language, color, and history that comprises the typical classroom; this means becoming culturally competent. In doing so, comes with it the prospect of using culture to enhance the learning experience for students and the educator. Although the process of becoming culturally competent can be outlined, the realization of a culturally competent educator depends on changing one’s own perceptions and beliefs. The need for cultural competency and
Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science
The Oregon Museum of Science and Industry (OMSI), located in Portland, is a hands-on science museum. In 2013, OMSI received funding from the National Science Foundation for the project Researching the Value of Educator Actions for Learning (REVEAL) to study how museum educators can better help families learn math while interacting with museum exhibits. Through REVEAL, OMSI was able to partner with Adelante Mujeres, a non-profit community organization located in Forest Grove that educates and empowers Latina women and their families. Here we share some of the lessons learned from the
The lack of equitable access to science learning for marginalized groups is now a significant concern in the science education community (Bell et al. 2009). In our commitment to addressing these concerns, we (the HERP Project staff) have spent four years exploring different ways to increase diverse student participation in our informal science programs called herpetology research experiences (HREs). We wanted the demographics of participants to mirror the racial, ethnic, cultural, linguistic, and socioeconomic demographics of the areas where our HREs are held. To achieve this, project staff
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
NASA’s Science Mission Directorate (SMD) explores the Earth, the Sun, our solar system, the galaxy and beyond through four SMD divisions: Earth Science, Heliophysics, Planetary Science and Astrophysics. Alongside NASA scientists, teams of education and public outreach (EPO) specialists develop and implement programs and resources that are designed to inspire and educate students, teachers, and the public about NASA science.