PocketMacro is a mobile app designed by the Learning Media Design Center at Carnegie Mellon University in collaboration with Stroud Water Research Center, Carnegie Museum of Natural History and Clemson University, and stakeholder input. The PocketMacro app aims to help users better identify benthic macroinvertebrates commonly found in streams and other waterways. Rockman et al Cooperative (REA), an independent educational evaluation group, designed a summative study to explore the effectiveness of the app in supporting users’ aquatic macroinvertebrate identification. The purpose of the
A wide gap exists between what scientists and rural farmers know. The rapid advancements in digital technology are likely to widen this gap even further. At the farmers' level, this knowledge gap often translates into poor and inefficient management of resources resulting in reduced profits and environmental pollution. Most modern rice cultivars can easily yield more than 5 tons per hectare when well managed, but millions of farmers often get less than 5 tons using the same production inputs.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will develop and study a cyber-enhanced informal learning environment to improve observational practices and classification skills among citizen scientists. The project will focus on the taxonomic identification skills needed by volunteers to provide high-quality data for water quality monitoring of local streams, lakes, estuaries, wetlands, and ground water resources. To make the task of identifying freshwater insects easier and more engaging, the project will develop an innovative educational resource, the Macroinvertebrate Identification Training Environment, that will use zoomable high-resolution images, interactive media, and annotations of diagnostic features to improve perceptual skills. The goal is to increase the confidence and accuracy of volunteers engaged in identification tasks, while also increasing the reliability and quality of the data they are generating for purposes of scientific research and conservation efforts. This interdisciplinary design research and development project will use networked gigapixel image technology to create a visual environment where users can move seamlessly from full panoramic views of macroinvertebrates to extreme close-ups, with embedded text, images, graphics, audio, and video at various locations and zoom levels. This system will be developed in concert with a cognitive apprenticeship training model designed through a series of design studies. The design studies will be conducted over a two-year period and will include examination of the distinguishing features of various biomonitoring programs, reviews of existing training materials and strategies, expert performance analysis of professional entomologists, and development of user interface features. Project developers will collaborate with five regional volunteer biomonitoring organizations to engage a diverse set of volunteers in the design process, including rural populations, older adults, urban youth, and the trainers who support them. The project work will consist of four integrated strands of activity: design-based learning research, creation of an entomological teaching collection, cyberplatform development, and the external evaluation of the training system. The resulting Macroinvertebrate Identification Training Environment will be evaluated in terms of its impacts on volunteer accuracy, confidence, and engagement in taxonomic classification activities related to macroinvertebrates. The impacts of the learning system on trainers and volunteer biomonitoring organizations will also be examined.