Skip to main content

Community Repository Search Results

resource research Public Programs
In this article we describe a model designed for rural settings that uses community-based “STEM Guides” as human brokers to engage isolated 10- to 18-year-old youth in STEM. The STEM Guides connect youth with opportunities that already exist in their communities, including after-school programs, clubs, camps, library activities, special events, contests, and competitions. STEM Guides also introduce youth and their families to virtual opportunities, such as citizen science monitoring, and statewide experiences, such as the Maine State Science Fair.
DATE:
TEAM MEMBERS: Jan Mokros Jennifer Atkinson Sue Allen Alyson Saunders Kate Kastelein
resource research Public Programs
This article describes the research and development of an NSF-funded, five-year experimental program to strengthen informal (out-of-school) STEM learning by youth in five rural communities. The central component of the model was a cadre of community members known as ‘STEM Guides’ who were hired to work as brokers between youth and the STEM learning resources potentially available to them. These STEM Guides were respected adults with credible connections to youth, flexible schedules, the ability to travel within the community, and enthusiasm for identifying local STEM resources. The Guides were
DATE:
TEAM MEMBERS: Sue Allen Kate Kastelein Jan Mokros Jennifer Atkinson Scott Byrd
resource evaluation Public Programs
This document is the final summative evaluation report written by EDC, the external evaluator of the STEM Guides project. The report concludes that the project was highly ambitious, with many dynamic and evolving pieces. It was deemed successful as a model of brokering connections between students aged 10-18 and STEM resources and opportunities in rural Maine communities. The STEM Guides program contributed to the increase in STEM awareness within each community, as well as connecting youth with interesting and relevant STEM experiences.
DATE:
TEAM MEMBERS: EDC
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource research Public Programs
We hired 1-3 residents of rural communities to serve as STEM Guides”, connecting youth to informal STEM experiences.
DATE:
TEAM MEMBERS: Sue Allen Jan Mokros Jennifer Atkinson Scott Byrd Kate Kastelein
resource project Professional Development, Conferences, and Networks
Aligning for Impact: Computer Science Pathways Across Contexts [CS-PAC] is an NSF INCLUDES Design and Development Launch Pilot. It broadens participation of students who are underrepresented in computer science by using the convening and policy-making power of the Georgia State Department of Education to coalesce school district leaders to implement K-12 computer science education. The project provides a national model for how to work toward systemic change. With the State Department of Education's coordination, several school districts will collaboratively seek improvements in their own student participation rates. The coordination of data reporting and analysis, resources, communications, and policy promote more equitable participation in computer science education. Research emerging from this project informs other states about how to collaboratively shape computer science education policy and policy implementation.

Using a Collective Impact approach to systemic change, the project creates sustainable institutional change at the community, state, and national levels. Qualitative and quantitative data provide descriptions about how to utilize alignment strategies within Collective Impact in three different contexts: rural, suburban, and urban. Outcomes utilize a regression discontinuity analysis to justify successful implementation as well as qualitative analysis of implementation efforts that were deemed most effective by all stakeholders. The project outputs directly affect over 88,000 students across five districts and indirectly affect over 1.7 million in Georgia alone. The culminating project goal is the development of a coherent framework for aligning K-12 computer science education pathways.
DATE: -
TEAM MEMBERS: Caitlin Dooley Bryan Cox Shawn Utley
resource project Professional Development and Workshops
This is an "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot that will implement a plan to assess the feasibility of a strategy designed to ensure high levels of improvement in K-12 grade students' mathematics achievement. The plan will focus on an often-neglected group of students--those who have been performing at the lowest quartile on state tests of mathematics, including African American, Hispanic, Native American, students with disabilities, and those segregated in urban and rural communities across the country. The project will draw on lessons learned from the nation's Civil Rights Movement and a community-organizing strategy learned during the struggle to achieve voting rights for African Americans. The Algebra Project (AP) is a national, nonprofit organization that uses mathematics as an organizing tool to ensure quality public school education for every child in America; it believes that every child has a right to a quality education to succeed in this technology-based society. AP's unique approach to school reform intentionally develops sustainable, student-centered models by building coalitions of stakeholders within the local communities, particularly the historically underserved populations. The AP works to change the deeply rooted social attitudes that encourage the disenfranchisement of a third of the nation's population. It delivers a multi-pronged approach to build demand for and support of quality public schools, including research and development, school development, and community development education reform efforts through K-12 initiatives.

The Algebra Project and the Young People's Project (YPP) will join efforts to bring together over 70 individuals and organizations, including 17 universities of which 8 are Historical Black Colleges and Universities, school districts, mathematics educators, and researchers to examine their experiences, and use collective learning to refine and hone strategies that they have piloted and tested to promote mathematics inclusion. The role of YPP in the proposed project will be to organize and facilitate the youth component, such that project activities reflect the language and culture of students, continuously leveraging and building upon their voice, creative input, and ongoing feedback. YPP will conduct workshops for students organized around math-based games that provide collective experiences in which student learning requires individual reflection, small group work, teamwork and discussion. The proposed work will comprise the design of effective learning opportunities; building and supporting a cadre of teachers who can effectively work with students learning under the proposed approach; using technologies to enhance teaching and learning; and utilizing evaluation and research to drive continuous improvement. Because bringing together an effective network with diverse expertise to collaborate towards national impact requires expert facilitation processes, the project will establish working groups around three major principles: (1) Organizing from the bottom up through students, their teachers, and others in local communities committed to their education, allied with individuals and organizations who have expertise and dedication for achieving the stated goals, can produce significant progress and the conditions for collective impact; (2) Effective learning materials and formal and informal learning opportunities in mathematics can be designed and implemented for students performing in the bottom academic quartile; and (3) Teachers and other educators can become more proficient and more confident in their capacity to produce students who are successful in learning the level of mathematics required for full participation in STEM. The working groups will also be tasked to consider two cross-cutting topics: (a) the communication structures and technologies needed to operate and expand the present network, and to create the "backbone" and other structures needed to operate and expand the network; and (b) the measurements and metrics for major needs, such as assessing students' mathematics literacy, socio-emotional development in specified areas; teachers' competencies; as well as the work of the network. The final product of this plan will be a "Theory of Collective Action and Strategic Plan". The plan will contain recommendations for collective actions needed in order for the current network to coordinate, add appropriate partners, develop the needed backbone structures, and become an NSF Alliance for national impact on the broadening participation challenge of improving the mathematics achievement. An external evaluator will conduct both formative and summative aspects of this process.
DATE: -
TEAM MEMBERS: Robert Moses Nell Cobb Gregory Budzban Maisha Moses William Crombie
resource research Public Programs
This poster from the 2014 AISL PI Meeting describes a project in Maine to derive and develop an educational model for informal science learning in rural areas where ISE venues are nonexistent.
DATE:
TEAM MEMBERS: Laurie Larsen
resource project Public Programs
This full-scale development project will address the need for creative models to support STEM learning in underserved rural communities that lack traditional infrastructure such as science centers. The project will create and study an innovative model of capacity-building: viz., small networks of community-embedded “STEM Guides” will be trained to identify a range of existing STEM resources available in their local regions, and to connect STEM-interested youth with them in creative and personal ways. Anticipated learning outcomes for youth and families include greater awareness of and interest in STEM experiences and pathways. At the regional level, the project will build capacity through increasing the STEM Guides’ knowledge of local STEM opportunities, and by enhancing connections among STEM-related resources, programs, and industries. The project will implement and study STEM Guide networks in a staggered series of five low-income, rural regions, providing startup resources and professional development. The project will increase the frequency and depth of out-of-school STEM experiences for approximately 3,000 youth aged 10-18 at a relatively low cost, creating a national model for STEM capacity-building in rural settings. It is led by the Maine Mathematics and Science Alliance, with 4-H, Cornerstones of Science (library-based STEM) and Maine’s university system as collaborators. EDC is the primary external evaluator.
DATE: -
TEAM MEMBERS: Jan Mokros Sue Allen
resource project Public Programs
The National Science Outreach Network will provide school children, teachers, and the general public with highly accessible interactive exhibits dealing with popular topics in science and technology. The network, initiated as a partnership between regional science centers and public libraries, will be modeled after the highly successful statewide Oregon Library Exhibits Network established in 1987. Through this smaller network, the Oregon Museum of Science and Industry, a nationally recognized pioneer in science exhibitry and outreach programming, circulates small hands-on exhibits to rural population centers through installations in public libraries, where school groups and families have free and convenient access. This national dissemination project will be initiated in five regional sites across the country (Colorado, Minnesota, New York, Tennessee, and Oregon) to further establish the model in rural, inner-urban, economically disadvantaged, and culturally diverse regions. With support from both the NSF and the regional networks, The National Science Outreach Network will design and duplicate six exhibits for circulation to dozens of local communities in each designated region. Over the next seven years, over six million individuals, many of whom do not currently frequent a local science center, will be introduced to popular science in a non-threatening, resource- rich setting. This will encourage further exploration and possible future visits to an accessible science center, and ultimately establish an ever-expanding network of museum and non-museum partners providing science and technology learning opportunities to millions of individuals each year.
DATE: -
TEAM MEMBERS: David Heil Loren Philbrick